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ABSTRACT

We show that there exists a reflexive Banach space (X , ‖.‖) and a strongly

continuous semigroup (T (t))t≥0 with generator (A, D(A)) on (X , ‖.‖) such

that limµ∈R, |µ|→∞ ‖R(iµ,A)‖ = 0 but (T (t))t≥0 is not eventually norm

continuous. This answers a question of Amnon Pazy in the negative.

1. Introduction

It is the fundamental principle of semigroup theory that the behavior of a

strongly continuous semigroup (T (t))t≥0 on a Banach space X and the proper-

ties of its generator (A, D(A)), or equivalently the properties of the resolvent

function R(λ, A) = (λ − A)−1 (λ ∈ C), should closely correlate. Indeed, the

Laplace transform carries the regularity properties of the semigroup to the resol-

vent function while the several inversion and approximation formulas (Trotter-

Kato, Post-Widder, etc.) allow the reconstruction of the semigroup from the

resolvent (see [7], [17] or [18] for the relevant techniques and results in semi-

group theory). And the correlation is indeed perfect if the participants are so:

the analytic semigroups, the differentiable or merely eventually differentiable
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semigroups are characterized by the geometry of the spectrum of A and by the

growth rate of R(λ, A) (see [7, Chapter II.4] or [17, Chapter 2.4 and Chapter

2.5]); and if X happens to be a Hilbert space the characterization of eventual

and immediate norm continuity is also known.

Theorem 1: Let A be the generator of a strongly continuous semigroup

(T (t))t≥0 on a Hilbert space (H, ‖.‖). Let s(A) = sup{Reλ : λ ∈ σ(A)} de-

note the spectral bound of A. Then

1. (T (t))t≥0 is immediately norm continuous, i.e., the mapping

T : (0,∞) → B(H)

is continuous, if and only if for some µ0 > s(A),

(1) lim
µ∈R, |µ|→∞

‖R(µ0 + iµ, A)‖ = 0;

2. (T (t))t≥0 is eventually norm continuous, i.e., there is a t0 > 0 such that

the mapping T : (t0,∞) → B(H) is continuous, if and only if there is

an n ∈ N and a µ0 > s(A) such that

(2) lim
µ∈R, |µ|→∞

‖R(µ0 + iµ, A)nT (t0)‖ = 0.

Moreover, conditions (1) and (2) are necessary for immediate and eventual norm

continuity in arbitrary Banach spaces.

The first part of this result, concerning immediate norm continuity, was first

proved by P. You [20]. Later his proof was analyzed, simplified and extended

to eventual norm continuity by G.-Q. Xu in [19], by O. El-Mennaoui and K.-J.

Engel in [5] and [6], and by O. Blasco, and J. Mart́ınez in [2].

However, even in Hilbert spaces one has to face pathologies. As shown by a

counterexample (see e.g. [7, 3.4 Counterexample pp. 273] or [18, Example 1.2.4

pp. 12]), the Spectral Mapping Theorem may fail in Hilbert spaces: if

ω0 = inf{ω ∈ R : ∃Mω ≥ 1 (‖T (t)‖ ≤ Mωeωt (t ≥ 0))}

denotes the growth bound of (T (t))t≥0, one can have s(A) ≤ 0 < 1 ≤ ω0,

in particular σ(T (t)) \ {0} 6= etσ(A). Since the Spectral Mapping Theorem is

crucial for the study of the asymptotic behavior of semigroups it is an important

revelation that the Spectral Mapping Theorem still holds in arbitrary Banach

spaces for eventually norm continuous semigroups. Hence it would be of
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utmost importance to find the characterization of the eventual or at least of the

immediate norm continuity of semigroups in Banach spaces.

In the past twenty years a huge amount of research activity has been carried

out in order to prove the eventual norm continuity (or at least some weaker

norm continuity) of semigroups arising from various PDE’s on various Banach

spaces (see e.g. [1], [3], [8], [10], [12], [13], [14], [15] and [16] for a representative

list of different approaches); a remarkable result of V. Goersmeyer and L. Weis

[11] gives that the characterization in Theorem 1.1 holds for positive semigroups

in Lp spaces (1 < p < ∞). But since neither a theorem analogous to Theorem 1

valid for arbitrary semigroups and Banach spaces was proved nor the optimistic

conjecture, often called Amnon Pazy’s Question in the literature, that Theorem

1 may hold in every Banach space, was disproved, the results did not give a

unified theory of norm continuity and were shadowed by the suspicion of being

superfluous.

The purpose of this paper is to show that the problem of characterizing the

norm continuity of semigroups in arbitrary Banach spaces indeed necessitates

new approaches. We give a negative answer to Pazy’s Question, i.e., by con-

structing a suitable Banach space and a semigroup we show that Theorem 1

does not characterize norm continuity in arbitrary Banach spaces.

Theorem 2: There exists a reflexive Banach space (X , ‖.‖) and a strongly con-

tinuous semigroup (T (t))t≥0 with generator (A, D(A)) satisfying the following.

1. (T (t))t≥0 is contractive, i.e., ‖T (t)‖ ≤ 1 (t ≥ 0);

2. R(λ,A) exists for every λ ∈ C with Reλ ≥ −1 and

lim
µ∈R, |µ|→∞

‖R(iµ,A)‖ = 0;

3. (T (t))t≥0 is not eventually norm continuous.

We remark that in our construction the Banach space (X , ‖.‖) is responsible

for the pathological behavior while the semigroup (T (t))t≥0 is in some sense

the simplest possible. After the construction we will discuss the structure of

(X , ‖.‖) but we state in advance that (X , ‖.‖) is not a UMD space, in particular

it is not Lp for 1 < p < ∞. Thus a counterexample, if exists, is still lacking in

UMD spaces. We will also discuss the failure of the Spectral Mapping Theorem

for our semigroup.
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Finally we would like to thank Prof. Lutz Weis for pointing out certain par-

ticularities of our construction, and in general for his suggestions and helpful

remarks.

2. The construction

In this section we construct a family of semigroups and Banach spaces exhibiting

more and more pathological behavior. They serve as building blocks for our

(T (t))t≥0 and (X , ‖.‖). Our reference for the basic notions of semigroup theory

is [7]. We recall some definitions related to norm continuity.

Definition 3: A strongly continuous semigroup (T (t))t≥0 is eventually norm

continuous if there exists a t0 ≥ 0 such that the map t 7→ T (t) is continuous

with respect to the uniform operator topology for t > t0. The semigroup is

immediately norm continuous if t0 = 0 can be chosen.

The semigroup is norm continuous at infinity if

lim
t→∞

(

lim sup
h↘0

e−ω0t‖T (t + h) − T (t)‖
)

= 0,

where ω0 is the growth bound of (T (t))t≥0.

We denote by N, R, R+ and C the nonnegative integers, the reals, the non-

negative reals and the complex numbers, respectively; log stands for the loga-

rithm to base e.

If X is a product space of n terms or a direct sum over N we index the

coordinates of X starting by 0 and for an x ∈ X and j ∈ N, x(j) stands for

the j-th coordinate of x. The indexing of matrices also starts by 0, and for an

n × n matrix A, A(i, j) stands for the element in the i-th row and j-th column

of A (0 ≤ i, j < n).

2.1. The idea. In order to have a Banach space and a semigroup for which the

characterization in Theorem 1 fails it is a natural approach to check whether

a matrix semigroup T (t) = eAt on a finite dimensional space X can fulfill

the requirements i) to be contractive (this allows us to glue semigroups

together); ii) to have small resolvent along the imaginary axis; iii) to have

‖T (1)x − T (1 − ε)x‖ ≥ 1/2 for some x ∈ X with ‖x‖ = 1 and ε small.

Now it is tempting to take a simple norm on X for which the construction is

likely to work according to the current theory of norm continuity, say l1 norm
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or l∞ norm. Unfortunately this approach has been not fruitful yet. Another

possibility is to start with the construction of the semigroup. Since one can

assume that A has no nontrivial invariant subspaces in X , and we have no

candidate for a “nice” norm in X anyway, we can fix a base in X in which

A becomes a Jordan block. Then at least we can write up the generator, the

semigroup and the resolvents explicitly. It remains to collect (keeping i)-iii) in

mind) all the vectors in X that we would like to have norm one; to define the

norm on X as the absolute convex hull of these vectors; and to hope that with a

bit of luck these vectors are independent enough to have norm one at the same

time. Indeed, this is what happens.

2.2. The semigroups. In this section we define semigroups on finite dimen-

sional vector spaces and compute their resolvents. These semigroups will serve

as building blocks in our construction.

Let Xn = Cn+1. Let An ∈ C(n+1)×(n+1) be the Jordan block with eigenvalue

−n, i.e.,

An =



























−n 1 0 . . . 0 0 0

0 −n 1 . . . 0 0 0

0 0 −n . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −n 1 0

0 0 0 . . . 0 −n 1

0 0 0 . . . 0 0 −n



























.

We define Tn = eAnt, so we have (see e.g. [7, Example 2.5. p. 9]

Tn(t) = e−nt



































1 t t2

2! . . . tj

j! . . . tn−1

(n−1)!
tn

n!

0 1 t . . . tj−1

(j−1)! . . . tn−2

(n−2)!
tn−1

(n−1)!

0 0 1 . . . tj−2

(j−2)! . . . tn−3

(n−3)!
tn−2

(n−2)!

...
...

...
. . .

...
...

...
...

0 0 0 . . . 1 . . . tn−j−1

(n−j−1)!
tn−j

(n−j)!

...
...

...
...

...
. . .

...
...

0 0 0 . . . 0 . . . 1 t

0 0 0 . . . 0 . . . 0 1



































.
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The resolvent function of An is

R(iµ, An) = (iµ − An)−1 =






































1
iµ+n

1
(iµ+n)2

1
(iµ+n)3 . . . 1

(iµ+n)k+1 . . .

0 1
iµ+n

1
(iµ+n)2 . . . 1

(iµ+n)k . . .

0 0 1
iµ+n . . . 1

(iµ+n)k−1 . . .
...

...
...

. . .
...

. . .

0 0 0 . . . 1
iµ+n . . .

...
...

...
. . .

...
. . .

0 0 0 . . . 0 . . .

0 0 0 . . . 0 . . .

0 0 0 . . . 0 . . .

. . . 1
(iµ+n)n−1

1
(iµ+n)n

1
(iµ+n)n+1

. . . 1
(iµ+n)n−2

1
(iµ+n)n−1

1
(iµ+n)n

. . . 1
(iµ+n)n−3

1
(iµ+n)n−2

1
(iµ+n)n−1

. . .
...

...
...

. . . 1
(iµ+n)n−k−1

1
(iµ+n)n−k

1
(iµ+n)n−k+1

. . .
...

...
...

. . . 1
iµ+n

1
(iµ+n)2

1
(iµ+n)3

. . . 0 1
iµ+n

1
(iµ+n)2

. . . 0 0 1
iµ+n









































.

We need to compute the powers of R(iµ, An). For this, we define the following

sequences (σk(n))∞n=1 (k ∈ N).

Definition 4: Set σ0(1) = 1 and σ0(n) = 0 (1 < n < ∞); if σk−1(n) (1 ≤ n < ∞)

is already defined let

σk(n) =

n
∑

j=1

σk−1(j) (1 ≤ n < ∞).
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Lemma 5: For every 1 ≤ m < ∞ we have

R(iµ, An)m = (iµ − An)−m =






































σm(1)
(iµ+n)m

σm(2)
(iµ+n)m+1

σm(3)
(iµ+n)m+2 . . . σm(j+1)

(iµ+n)m+j . . .

0 σm(1)
(iµ+n)m

σm(2)
(iµ+n)m+1 . . . σm(j)

(iµ+n)m+j−1 . . .

0 0 σm(1)
(iµ+n)m . . . σm(j−1)

(iµ+n)m+j−2 . . .
...

...
...

. . .
...

. . .

0 0 0 . . . σm(1)
(iµ+n)m . . .

...
...

...
. . .

...
. . .

0 0 0 . . . 0 . . .

0 0 0 . . . 0 . . .

0 0 0 . . . 0 . . .

. . . σm(n−1)
(iµ+n)m+n−2

σm(n)
(iµ+n)m+n−1

σm(n+1)
(iµ+n)m+n

. . . σm(n−2)
(iµ+n)m+n−3

σm(n−1)
(iµ+n)m+n−2

σm(n)
(iµ+n)m+n−1

. . . σm(n−3)
(iµ+n)m+n−4

σm(n−2)
(iµ+n)m+n−3

σm(n−1)
(iµ+n)m+n−2

. . .
...

...
...

. . . σm(n−j−1)
(iµ+n)m+n−j−2

σm(n−j)
(iµ+n)m+n−j−1

σm(n−j+1)
(iµ+n)m+n−j

. . .
...

...
...

. . . σm(1)
(iµ+n)m

σm(2)
(iµ+n)m+1

σm(3)
(iµ+n)m+2

. . . 0 σm(1)
(iµ+n)m

σm(2)
(iµ+n)m+1

. . . 0 0 σm(1)
(iµ+n)m









































.

Proof. We prove the statement by induction on m. For m = 1 we have σ1(n) = 1

(1 ≤ n < ∞) so the statement holds. Suppose that it is true for m. For

0 ≤ j ≤ k ≤ n we have

[

R(iµ, An)m+1
]

(j, k) = [R(iµ, An)mR(iµ, An)] (j, k)

=

k
∑

l=j

σm(l + 1 − j)

(iµ + n)m+l−j

1

(iµ + n)k+1−l

=
σm+1(k + 1 − j)

(iµ + n)m+1+k−j
,

while for 0 ≤ k < j ≤ n we have
[

R(iµ, An)m+1
]

(j, k) = 0, so the proof is

complete.
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If k ∈ N, µ ∈ Rk and ν ∈ Nk are arbitrary, for notational convenience we

introduce

R (iµ, An)ν = R (iµ(0), An)ν(0) R (iµ(1), An)ν(1) , . . . , R (iµ(k − 1), An)ν(k−1) .

Observe that all the R(iµ, An)s commute so the order of our products does not

matter. For µ ∈ Rk and ν ∈ Nk we set |µ| = |µ(0)| + · · · + |µ(k − 1)| and

|ν| = ν(0) + · · · + ν(k − 1).

Next we show that R(0, An)ν is the biggest of all the R(iµ, An)νs.

Lemma 6: For every k ∈ N, µ ∈ Rk, ν ∈ Nk and 0 ≤ j, l ≤ n we have

|[R (iµ, An)ν ] (j, l)| ≤
[

R(0, An)|ν|
]

(j, l).

Proof. We prove the statement by induction on |ν|. For |ν| = 1 the statement

is obvious. Suppose that it is true for |ν| = m. Take a ν with |ν| = m + 1; we

can assume that ν(0) > 0. Let ν′ be defined by ν′(0) = ν(0)−1 and ν′(i) = ν(i)

for i ≥ 1. By the induction hypothesis,

|[R (iµ, An)
ν
] (j, l)| =

∣

∣

∣

[

R(iµ(0), An)R (iµ, An)
ν′

]

(j, l)
∣

∣

∣

≤ [R(0, An)R (0, An)
m

] (j, l) =
[

R (0, An)
m+1

]

(j, l),

as stated.

We close this section with estimates on σm(n).

Lemma 7: For 1 ≤ m, n < ∞ we have

(3)
nm−1

(m − 1)!
≤ σm(n) ≤ (n + m − 2)m−1

(m − 1)!
.

Proof. We prove the statement by induction on m. Since σ1(n) = 1 (1 ≤ n < ∞)

the statement is true for m = 1. Suppose that (3) holds for m. Then by Defi-

nition 4,

nm

m!
=

∫ n

0

xm−1

(m − 1)!
dx ≤

n
∑

j=1

jm−1

(m − 1)!
≤

n
∑

j=1

σm(j) = σm+1(n) and

σm+1(n) =

n
∑

j=1

σm(j) ≤
n

∑

j=1

(j + m − 2)m−1

(m − 1)!
≤

∫ n+1

1

(x + m − 2)m−1

(m − 1)!
dx

≤ (n + m − 1)m

m!
,

as required.



Vol. 168, 2008 NORM CONTINUITY 9

In the sequel, b.c stands for lower integer part.

Lemma 8: For 400 ≤ n < ∞,

(

1 +
b√nc

n − b√nc

)n−b√nc
e−b√nc ≤ 2

3

and
(

1 − b√nc
n

)n

eb
√

nc ≤ 2

3
.

Proof. By taking logarithm, for 400 ≤ n < ∞ we get

(n−b√nc) log

(

1 +
b√nc

n − b√nc

)

− b√nc

≤ (n − b√nc)
( b√nc

n − b√nc − b√nc2
2(n − b√nc)2 +

b√nc3
3(n − b√nc)3

)

− b√nc

= − b√nc2
2(n − b√nc) +

b√nc3
3(n − b√nc)2 ≤ − 9

20
,

and

n log

(

1 − b√nc
n

)

+ b√nc ≤ n

(

−b√nc
n

− b√nc2
2n2

)

+ b√nc = − b√nc2
2n

≤− 9

20

so the statements follows from e−9/20 ≤ 2/3.

Lemma 9: For every 0 ≤ k < ∞ and max{1, k} ≤ n < ∞,

(4) en−k(1 − k/n)k−ne−nttn−k ≤ 1 (t ≥ 0).

For t ≥ 0 the function t 7→ en−k (1 − k/n)
k−n

e−nttn−k attains its maximum 1

for t = 1−k/n, it is strictly increasing on [0, 1−k/n] and strictly decreasing on

[1−k/n,∞). Moreover, if n ≥ e9, 0 ≤ k ≤ 2n/3 and |t−(1−k/n)| ≥ 2
√

log(n)/n

then

(5) en−k(1 − k/n)k−ne−nttn−k ≤ 1/n.

Proof. A simple derivation shows the monotonicity properties and (4) immedi-

ately follow. For (5), by monotonicity it is enough to show

en−k (1 − k/n)
k−n

e−nttn−k ≤ 1/n for |t − (1 − k/n)| = 2
√

log(n)/n.
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Let τ = ±2
√

n log(n), i.e., t = 1 − k/n + τ/n. Then we have to show that

en−k(1 − k/n)k−ne−nttn−k = e−τ (1 + τ/(n − k))n−k ≤ 1/n.

After taking logarithm and using n/3 ≤ n − k ≤ n we get

−τ + (n − k) log

(

1 +
τ

n − k

)

≤ − τ2

2(n − k)
+

τ3

3(n − k)2

≤ −4n log(n)

2n
+

32 · 8(n log(n))3/2

3n2

≤ −2 log(n) + 24
√

log(n)3/n ≤ − log(n)

for n ≥ e9. This completes the proof.

The properties in the following definition play a key role in the construction

of our Banach spaces.

Definition 10: We say that a sequence (γn)n∈N satisfies

(G1) if γn ≥ 1 (n ∈ N);

(G2) if 2(1+2 log(γn+d))e
1+2 log(γn+d) ≤ log(n) (0 ≤ d ≤

√
2n, e6 ≤ n < ∞);

(G3) if γn+d ≤ log(n) (0 ≤ d ≤
√

2n, e6 ≤ n < ∞);

(G4) if γn → ∞ as n → ∞.

The reason for taking n ≥ e6 is that even for γn+d = 1, (G2) can be satisfied

only for n & e6. It is easy to see that a sequence satisfying (G1–G4) exists, e.g.

γn = max {1, log(log(n))} works, but we do not need an explicit formula for the

γns so we omit the elementary computation.

We need two simple observations.

Lemma 11: For every sequence (γn)n∈N,

1. (G2) implies 4 + 4 log(γn+d) ≤ log(n) (0 ≤ d ≤
√

2n, e6 ≤ n < ∞);

2. (G3) implies 3 log(3n)1/2(1 + 2 log(γn+d)) ≤ log(n) (0 ≤ d ≤
√

2n,

e2500 ≤ n < ∞).

Proof. The statements follow from 4 + 4x ≤ 2(1 + 2x)e1+2x (x ∈ R+) and

3 log(3n)1/2(1 + 2 log(log(n))) ≤ log(n) (e2500 ≤ n ≤ ∞).

Lemma 12: Let e60 ≤ n < ∞, 0 ≤ d ≤
√

2n and 1 ≤ m < ∞. If (γn)n∈N

satisfies (G1) and (G2), then

(6)
σm(n + 1)

nm

( e

n

)n

n!γm
n+d ≤ 1
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while if
√

n + 1 ≤ m < ∞, in addition, then

(7)
σm(n + 1)

nm

( e

n

)n

n!γm
n+d ≤ 1√

m − 1
.

If e2500 ≤ n < ∞ and (γn)n∈N satisfies (G1) and (G3), then for 1 ≤ m ≤
√

log(3n) we have

(8)
σm(n + 1)

nm

( e

n

)n

n!γm
n+d ≤ 1

n1/6
.

Proof. By the Stirling formula,

(9)
√

2πn
(n

e

)n

e
1

12n+1 ≤ n! ≤
√

2πn
(n

e

)n

e
1

12n (1 ≤ n < ∞).

For m = 1 and m = 2 we have σ1(n) = 1 and σ2(n) = n (n ∈ N) so (6) and (8)

turn to

(10)
( e

n

)n

n! ≤ n

γn+d
,

( e

n

)n

n! ≤ n2

(n + 1)γ2
n+d

and

(11)
( e

n

)n

n! ≤ n5/6

γn+d
,

( e

n

)n

n! ≤ n11/6

(n + 1)γ2
n+d

.

By (9) both (G2) and (G3) imply

( e

n

)n

n! ≤
√

2πne1/(12n) ≤ n2/3

2 log2(n)
≤ min

{

n5/6

γn+d
,

n11/6

(n + 1)γ2
n+d

}

for our n and d so (10) and (11) hold.

For m ≥ 3, by Lemma 7 and (9), the left handside of (6), (7) and (8) can be

estimated as

σm(n + 1)

nm

( e

n

)n

n!γm
n+d ≤ (n + m − 1)m−1

nm(m − 1)!

( e

n

)n √
2πn

(n

e

)n

e
1

12n γm
n+d

≤ (n + m − 1)m−1

nm

1
√

2π(m − 1)

( e

m − 1

)m−1

× e−
1

12(m−1)+1

√
2πne

1
12n γm

n+d

≤ (n + m − 1)m−1

nm−1(m − 1)m−1

1
√

n(m − 1)
em−1γm

n+de
1

12n .
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By taking logarithm and replacing m − 1 with m we have to show that

(12) m log(n + m) + m + (m + 1) log(γn+d) +
1

12n

≤















(

m + 1
2

)

(log(n) + log(m)) for 2 ≤ m < ∞;
(

m + 1
2

)

(log(n) + log(m)) − 1
6 log(n) for 2 ≤ m ≤

√

log(3n);
(

m + 1
2

)

log(n) + m log(m) for
√

n ≤ m < ∞.

Suppose first that m ≤ √
n. Then m log(1 + m/n) ≤ m2/n ≤ 1 so

(13)

m log(n + m) + m + (m + 1) log(γn+d) +
1

12n

≤ m log(n) + m log
(

1 +
m

n

)

+ m(1 + 2 log(γn+d)) + 0.1

≤ m log(n) + m(1 + 2 log(γn+d)) + 1.1.

If 1 + 2 log(γn+d) ≤ log(m) then the first inequality of (12) holds by 1.1 ≤
1/2 log(n). While if log(2) ≤ log(m) < 1 + 2 log(γn+d) then by (G2),

m(1 + 2 log(γn+d)) ≤ e1+2 log(γn+d)(1 + 2 log(γn+d)) ≤
1

2
log(n)

so the first inequality of (12) follows from 1.1 ≤ 2 log(2) ≤ m log(m).

For 2 ≤ m ≤ log(3n)1/2, by (G3) and Lemma 11.2 we have

m(1 + 2 log(γn+d)) ≤ log(3n)1/2(1 + 2 log(γn+d)) ≤
1

3
log(n)

so the second inequality of (12) follows again from 1.1 ≤ 2 log(2) ≤ m log(m).

Finally suppose that
√

n ≤ m, say m = nα where α ≥ 1/2. Then the third

inequality of (12) turns to

(14) m log(n) + m log(1 + nα−1) + m

(

1 +
m + 1

m
log(γn+d)

)

+
1

12n

≤ m log(n) + αm log(n) +
1

2
log(n),

so by 1/(12n) ≤ 1 ≤ 1/2 log(n) it is enough to show that

m log(n) + m log(1 + nα−1) + m(1 + 2 log(γn+d)) ≤ m log(n) + αm log(n),

i.e., that

log(1 + nα−1) + 1 + 2 log(γn+d) ≤ α log(n).

For 1/2 ≤ α ≤ 1 this follows from (G2) and Lemma 11.1 by

log(1 + nα−1) + 1 + 2 log(γn+d) ≤ 2 + 2 log(γn+d) ≤ 1/2 log(n).
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For α > 1 we have

log(1 + nα−1) + 1 + 2 log(γn+d) ≤ log(nα−1) + 2 + 2 log(γn+d)

= α log(n) − log(n) + 2 + 2 log(γn+d)

so we are done again by (G2) and Lemma 11.1. This completes the proof.

2.3. The Banach spaces. We turn Xn into a Banach space by defining the

unit ball of a norm on it. For this, let vn = (0, 0, . . . , 0, 1) ∈ Xn and let (γn)n∈N

satisfy (G1), (G2) and (G4) of Definition 10. We define the closed unit ball of

the norm on Xn by

Bn(1) = abs co
{

γ|ν|
n R (iµ, An)ν Tn(t)vn : k ∈ N, µ ∈ R

k, ν ∈ N
k, t ∈ R

+
}

,

where abs co stands for taking the absolute convex hull. We prove first that

Bn(1) is indeed the closed unit ball of a norm on Xn.

Lemma 13: Endow Xn with the coordinate supremum norm. Then Bn(1) is a

compact convex symmetric set in Xn with nonempty interior; in particular it is

the closed unit ball of a norm on Xn. We denote this norm by ‖.‖n.

1. Every x ∈ Xn with ‖x‖n = 1 can be written as

(15) x =
l

∑

j=0

αjγ
|νj |
n R (iµj , An)νj Tn(tj)vn

where 0 ≤ l ≤ n, kj ∈ N (j ≤ l), (νj , µj, tj) ∈ Nkj × Rkj × R+ (j ≤ l)

and αj ∈ C (j ≤ l) such that
∑

j≤l |αj | = 1.

2. Conversely, if an x ∈ Xn can be written as in (15) where 0 ≤ l ≤ n,

kj ∈ N (j ≤ l), (νj , µj, tj) ∈ Nkj × Rkj ×R+ (j ≤ l) and αj ∈ C (j ≤ l)

such that
∑

j≤l |αj | ≤ 1 then ‖x‖n ≤ 1.

3. A functional ϕ : Xn → C attains its norm on a vector in

(16)
{

γ|ν|
n R (iµ, An)

ν
Tn(t)vn : k ∈ N, µ ∈ R

k, ν ∈ N
k, t ∈ R

+
}

.

Proof. First we show that the set of (16) is compact in the coordinate supremum

norm. For this it is enough to show that the entries of γ
|ν|
n R (iµ, An)

ν
Tn(t) are

bounded and tend to zero as max{|µ|, |ν|, t} → ∞. It is clear that the entries

of T (t), being of the form e−nttk/k! (0 ≤ k ≤ n), are bounded and tend to zero

as t → ∞. Consider now the nonzero entries of γ
|ν|
n R (iµ, An)

ν
. With m = |ν|
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and 0 ≤ j ≤ k ≤ n, by Lemma 5 and Lemma 6 we have

γ|ν|
n [R (iµ, An)

ν
] (j, k) ≤γm

n [R (0, An)
m

] (j, k) = γm
n

σm(k + 1 − j)

nm+1+k−j

≤γm
n

σm(n + 1)

nm+1
.

From (6) and (7) of Lemma 12, using (e/n)nn! ≥
√

2πn from (9), we get

γm
n

σm(n + 1)

nm+1
≤ 1

n
and γm

n

σm(n + 1)

nm+1
→ 0 as m → ∞.

So the entries of γ
|ν|
n R (iµ, An)

ν
are bounded uniformly in µ and ν and tend to

zero as |ν| → ∞. Since for |ν| fixed the entries of γ
|ν|
n R (iµ, An)

ν
tend to zero

as |µ| → ∞, the statement follows. Now Bn(1) is the absolute convex hull of

the compact set of (16), so it is compact, convex and symmetric. Its interior is

nonempty since {R(ij, An)vn : 0 ≤ j ≤ n} are already linearly independent (see

e.g. [9, Exercise 154, p. 29]).

Next we show 1. The norm one vectors of Xn are on the boundary of Bn(1).

Since Bn(1) is compact and convex, its boundary points can be obtained as the

sum one linear combinations of the extreme points of Bn(1). Now Bn(1) is the

absolute convex hull of the compact set of (16) so the extreme points of Bn(1)

are in the set of (16). This proves 1.

Statement 2 follows directly from the definition of Bn(1). Since a functional

attains its norm on an extreme point of the unit ball we have statement 3, which

completes the proof.

We denote by ‖.‖n the operator norm on B(Xn) and also the norm of func-

tionals on Xn.

Lemma 14: The semigroup (Tn(t))t≥0 satisfies ‖Tn(t)‖n ≤ 1 (t ≥ 0).

Proof. We show that ‖Tn(t)x‖n ≤ 1 for every x ∈ Xn with ‖x‖n = 1 and t ≥ 0.

Take x ∈ Xn with ‖x‖n = 1. By Lemma 13.1 there are 0 ≤ l ≤ n, kj ∈ N

(j ≤ l), (νj , µj, tj) ∈ N
kj × R

kj × R
+ (j ≤ l) and αj ∈ C (j ≤ l) such that

∑

j≤l |αj | = 1 and

x =

l
∑

j=0

αjγ
|νj |
n R (iµj, An)

νj Tn(tj)vn.
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Let t ≥ 0 be arbitrary. Since the operators in the semigroup and the resolvents

commute,

(17)

Tn(t)x =Tn(t)

( l
∑

j=0

αjγ
|νj |
n R (iµj, An)νj Tn(tj)vn

)

=

l
∑

j=0

αjγ
|νj |
n R (iµj, An)

νj Tn(t + tj)vn.

Thus by Lemma 13.2, ‖Tn(t)x‖n ≤ 1.

Lemma 15: The resolvent R(λ, An) exists for every λ ∈ C \ {−n} and there is

a constant Cn > 0 such that

‖R(iµ, An)‖n ≤ min {1/γn, Cn/|µ|} (µ ∈ R).

Proof. Since An is a Jordan block of eigenvalue −n, R(λ, An) exists for every

λ ∈ C \ {−n}. Let x ∈ Xn satisfy ‖x‖n = 1. Then by Lemma 13.1, for some

0 ≤ l ≤ n, kj ∈ N (j ≤ l), (νj , µj , tj) ∈ Nkj × Rkj × R+ (j ≤ l) and αj ∈ C

(j ≤ l) we have
∑

j≤l |αj | = 1 and

x =

l
∑

j=0

αjγ
|νj |
n R (iµj, An)

νj Tn(tj)vn.

By Lemma 13.2,

R(iµ, An)x =
l

∑

j=0

αjγ
|νj |
n R (i(µj , µ), An)(νj ,1) Tn(tj)vn

=

l
∑

j=0

αj

γn
γ|(νj ,1)|

n R (i(µj, µ), An)
(νj ,1)

Tn(tj)vn

is of norm at most 1/γn, which proves the first part of the statement. The

existence of Cn follows from the definition R(iµ, An) = (iµ − An)−1.

Proposition 16: For e61 ≤ n < ∞, ‖Tn(1)vn − Tn(1 − b√nc/n)vn‖n ≥ 1/3.

Proof. Consider the functional ϕ : Xn → C defined by

ϕ(x) = n!enx(0) − (n − b√nc)!en−b√nc (

1 − b√nc/n
)−n+b√nc

x(b√nc).

It suffices to show that ‖ϕ‖n ≤ 2 and that

(18) ϕ
(

Tn(1)vn − Tn(1 − b√nc/n)vn

)

≥ 2/3.
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To have ‖ϕ‖n ≤ 2, by Lemma 13.3 it is enough to check |ϕ(x)| ≤ 2 for every

x = γ
|ν|
n R (iµ, An)

ν
Tn(t)vn where k ∈ N, µ ∈ Rk, ν ∈ Nk and t ∈ R+. Let

m = |ν|; since Tn(t) has nonnegative entries, by Lemma 6 we have

|ϕ(x)| ≤n!enγm
n [R(0, An)mTn(t)vn] (0)

+ (n − b√nc)!en−b√nc (

1 − b√nc/n
)−n+b√nc

× γm
n [R(0, An)mTn(t)vn] (b√nc).

Now if m = 0,

[Tn(t)vn] (0) = e−nt t
n

n!
and [Tn(t)vn] (b√nc) = e−nt tn−b√nc

(n − b√nc)! ,

while if m ≥ 1,

[R(0, An)mTn(t)vn] (0) =
n

∑

j=0

σm(n + 1 − j)

nm+n−j

tj

j!
e−nt ≤ σm(n + 1)

nm+n

n
∑

j=0

(nt)j

j!
e−nt

≤σm(n + 1)

nm+n

and

(19)

[R(0, An)mTn(t)vn] (b√nc) =

n−b√nc
∑

j=0

σm(n − b√nc + 1 − j)

nm+n−b√nc−j

tj

j!
e−nt

≤ σm(n − b√nc + 1)

nm+n−b√nc

n−b√nc
∑

j=0

(nt)j

j!
e−nt

≤ σm(n − b√nc + 1)

nm+n−b√nc .

Thus if m = 0,

|ϕ(x)|≤n!ene−nt t
n

n!
+ (n − b√nc)!en−b√nc

(

1 − b√nc
n

)−n+b√nc
e−nt tn−b√nc

(n − b√nc)!

=ene−nttn + en−b√nc
(

1 − b√nc
n

)b√nc−n

e−nttn−b√nc ≤ 2
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by Lemma 9 for k = 0 and k = b√nc. While if m ≥ 1,

|ϕ(x)| ≤n!enγm
n

σm(n + 1)

nm+n

+ (n − b√nc)!en−b√nc (

1 − b√nc/n
)−n+b√nc

γm
n

σm(n − b√nc + 1)

nm+n−b√nc

=n!
( e

n

)n

γm
n

σm(n + 1)

nm

+ (n − b√nc)!
( e

n − b√nc
)n−b√nc

γm
n−b√nc+b√nc

σm(n − b√nc + 1)

(n − b√nc)m

×
(

1 − b√nc
n

)m

.

Since e61 ≤ n implies e60 ≤ n − b√nc and b√nc ≤
√

2(n − b√nc), by (6) in

Lemma 12 for d = 0 and d = b√nc we get

n!
( e

n

)n

γm
n

σm(n + 1)

nm
≤ 1

and

(n − b√nc)!
(

e

n − b√nc

)n−b√nc
γm

n−b√nc+b√nc
σm(n − b√nc + 1)

(n − b√nc)m
≤ 1;

thus we concluded |ϕ(x)| ≤ 2.

To show (18), by Lemma 8 we have

ϕ(Tn(1)vn)

= n!en e−n

n!
− (n − b√nc)!en−b√nc (

1 − b√nc/n
)−n+b√nc e−n

(n − b√nc)!

= 1 −
(

n

n − b√nc

)n−b√nc
e−b√nc

= 1 −
(

1 +
b√nc

n − b√nc

)n−b√nc
e−b√nc ≥ 1/3
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and

ϕ(Tn(1 − b√nc/n)vn)

=n!ene−n+b√nc (1 − b√nc/n)
n

n!

− (n − b√nc)!en−b√nc (

1 − b√nc/n
)−n+b√nc

e−n+b√nc (1 − b√nc/n)n−b√nc

(n − b√nc)!

=
(

1 − b√nc
n

)n

eb
√

nc − 1 ≤ −1

3

thus

ϕ
(

Tn(1)vn − Tn(1 − b√nc/n)vn

)

≥ 2/3,

as required.

2.4. The counterexample. Let 1 ≤ p < ∞ be arbitrary fixed and set

(X , ‖.‖) =
∞

⊕

n=e61

(Xn, ‖.‖n)

as an lp-sum of Banach spaces, i.e., for x ∈ X ,

‖x‖ =

( ∞
∑

n=e61

‖x(n)‖p
n

)1/p

.

As usual, ‖.‖ stands for the norm of operators and functionals on X , as well.

Consider the operators

T (t) =

∞
⊕

n=e61

Tn (t/
√

γn) (t ≥ 0),

and let the unbounded operatorA : X → X be A =
⊕∞

n=e61
1√
γn

An with natural

domain D(A) = {x ∈ X : Ax ∈ X}. We show that (X , ‖.‖), (A, D(A)) and

(T (t))t≥0 fulfill the requirements of Theorem 2.

Proposition 17: With the notation introduced above we have the following.

1. (X , ‖.‖) is a Banach space which is reflexive for 1 < p < ∞;

2. (T (t))t≥0 is a strongly continuous semigroup of bounded operators sat-

isfying ‖T (t)‖ ≤ 1 (t ≥ 0);

3. (A, D(A)) is the generator of (T (t))t≥0;

4. R(λ,A) exists for every λ ∈ C \
{

−k/
√

γk : e61 ≤ k < ∞
}

and

lim
µ∈R, |µ|→∞

‖R(iµ,A)‖ = 0;
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5. (T (t))t≥0 is not eventually norm continuous; moreover (T (t))t≥0 is not

norm continuous at infinity.

Proof. The first statement is obvious. For the second, by Lemma 14 we have

‖T (t)|Xn‖ ≤ 1 (t ≥ 0, e61 ≤ n < ∞) which implies ‖T (t)‖ ≤ 1 (t ≥ 0). It is

clear that (T (t))t≥0 is a semigroup so it remains to show that it is strongly

continuous; by [7, 5.3 Proposition p. 38] it is enough to show limt↘0 T (t)x = x

for every x ∈ X . Fix ε > 0 and take an x ∈ X . There is an N > e61 such

that
∑∞

n=N+1 ‖x(j)‖p
j ≤ (ε/4)p. Since the restriction of (T (t))t≥0 to the finite

dimensional space
⊕N

n=e61 Xn is norm continuous there is a τ > 0 such that

for every 0 ≤ t < τ and x′ ∈ ⊕N
n=e61 Xn we have ‖T (t)x′ − x′‖ ≤ ε/2. Let

x = x′ + x′′ with x′ ∈ ⊕N
n=e61 Xn and x′′ ∈ ⊕∞

n=N+1 Xn; then ‖x′′‖ ≤ ε/4.

Since (T (t))t≥0 is contractive we have

‖T (t)x − x‖ ≤ ‖T (t)x′ − x′‖ + ‖T (t)x′′ − x′′‖ ≤ ε

2
+ ‖T (t)x′′‖ + ‖x′′‖ ≤ ε

(0 ≤ t < τ), as required.

For 3, observe that (A, D(A)) is a closed densely defined operator. Since the

generator of T (t)|Xn is An/
√

γn, A is the generator of (T (t))t≥0.

We turn to 4. By Lemma 15, R(λ, An/
√

γn) =
√

γnR(
√

γnλ, An) exists for

every λ ∈ C \ {−n/
√

γn} (1 ≤ n < ∞). Thus for λ ∈ C fixed, R(λ, An) exists

for sufficiently large n and by Lemma 15 and (G4) of Definition 10,

|λ|‖R(0, An/
√

γn)‖n ≤ |λ|√γn → 0 as n → ∞;

in particular
[

I + λR(0, An/
√

γn)
]−1

exists and is bounded in norm uniformly

in n. So if λ ∈ C \ {−k/
√

γk : e61 ≤ k < ∞} is fixed, R(λ, An/
√

γn) =

R(0, An/
√

γn)
[

I + λR(0, An/
√

γn)
]−1

exists and it is bounded in norm uni-

formly in n. So we have R(λ,A) =
⊕∞

n=e61 R(λ, An/
√

γn), a bounded operator

on X , as required. Moreover, by Lemma 15 we have

(20) ‖R(iµ,A)‖ = sup
e61≤n<∞

‖R(iµ, An/
√

γn)‖ ≤ sup
e61≤n<∞

min

{

1√
γn

,
Cn

|µ|

}

,

and by (G4) of Definition 10,

sup
e61≤n<∞

min {1/
√

γn, Cn/|µ|} → 0 as |µ| → ∞,

which proves 4.

To have 5, we show first that (T (t))t≥0 is not norm continuous in any t0 ≥ 0.

Fix an arbitrary t0 ≥ 0. Let n ≥ e61 such that t0 ≤ √
γn/2. Let xn ∈ X be
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the vector which is nonzero only on Xn and xn|Xn = vn. Let τn > 0 be defined

by t0 + τn =
√

γn(1 − b√nc/n) and set yn = T (τn)xn. Then ‖xn‖ ≤ 1 and

‖T (τn)‖ ≤ 1 imply ‖yn‖ ≤ 1 while by Proposition 16 we have

∥

∥

∥T
(

t0 +

√
γnb

√
nc

n

)

yn − T (t0)yn

∥

∥

∥

=

∥

∥

∥

∥

Tn

(

t0 + τn√
γn

+
b√nc

n

)

vn − Tn

(

t0 + τn√
γn

)

vn

∥

∥

∥

∥

n

=

∥

∥

∥

∥

Tn (1) vn − Tn

(

1 − b√nc
n

)

vn

∥

∥

∥

∥

n

≥ 1

3
.

By (G2) of Definition 10,
√

γnb
√

nc/n → 0 as n → ∞ thus (T (t))t≥0 is not

norm continuous in t0, indeed. Moreover, for the growth bound of (T (t))t≥0 we

have ω0 = 0 and

lim sup
t→∞

(

lim sup
h↘0

‖T (t + h) − T (t)‖
)

≥ 1

3
,

thus (T (t))t≥0 is not norm continuous at infinity. This completes the

proof.

3. Analysis

To close this paper we would like to point out certain particularities of the

construction above. First, we show that, for n sufficiently large, (Xn, ‖.‖n)

contains a subspace of dimension log(n) where the norm is approximately the

l1 norm (see (21)). This shows, in particular, that the resulting Banach space

(X , ‖.‖) is not a UMD space (see e.g. [4]). Second, we describe the spectrum of

T (t) (t ≥ 0) and we obtain a drastic failure of any spectral mapping theorem.

Finally we revisit the decay of ‖R(iµ,A)‖ for |µ| → ∞.

3.1. The structure of (X , ‖.‖). Our construction has one free parameter:

the sequence (γn)n∈N. It has to be chosen in such a way that (6) in Lemma 12

holds. By Lemma 7 and (9),

1 ≥γm
n

σm(n + 1)

nm

( e

n

)n

n! ≥ γm
n

nm−1

(m − 1)!nm

( e

n

)n (n

e

)n √
2πn

≥
(

eγn

m − 1

)m−1
e−1/(12(m−1))

√

n(m − 1)
.
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In particular, for m − 1 = log(n) we get (γn/ log(n))log(n) ≤
√

log(n)/n. This

shows γn ≤ log(n) (3 ≤ n < ∞). We will use this observation in two ways:

by assuming γn+d ≤ log(n) (3 ≤ n < ∞ , 0 ≤ d <
√

2n) and by assuming

γn/γn−k ≤ 3/2 (n ∈ N, n/2 ≤ k ≤ n). Observe that (G3) of Definition 10 is

then satisfied.

Let dn ∈ N satisfy 4
√

n log(n) + 1 < dn < n/(6 log(n)) and set

Kn = {b(n + 1)/2c+ jdn : 0 ≤ j < log(n)}.

We show that for n sufficiently large, on Yn = span 〈Tn(1 − k/n)vn : k ∈ Kn〉 ≤
Xn the ‖.‖n norm and the l1 norm approximately coincide, i.e., for every y ∈ Yn,

say y =
∑

k∈Kn
αkTn(1 − k/n)vn where αk ∈ C (k ∈ Kn), we have

(21)
n − log(n)

n + log(n)

∑

k∈Kn

|αk| ≤ ‖y‖n ≤
∑

k∈Kn

|αk|.

The inequality ‖y‖n ≤ ∑

k∈Kn
|αk| holds by Lemma 13.2. For the other

inequality, consider the functional ϕ : Xn → C,

ϕ(x) =
∑

k∈Kn

(n − k)!en−k (1 − k/n)k−n |αk|
αk

x(k).

Just as in the proof of Lemma 16, it is enough to show that ‖ϕ‖n ≤ 1+log(n)/n

and that ϕ(y) ≥ (1 − log(n)/n)
∑

k∈Kn
|αk|.

To have ‖ϕ‖n ≤ 1 + log(n)/n, by Lemma 13.3 it is enough to check |ϕ(x)| ≤
1+ log(n)/n for every x = γ

|ν|
n R (iµ, An)

ν
Tn(t)vn where k ∈ N, µ ∈ Rk, ν ∈ Nk

and t ∈ R+. Let m = |ν|; since Tn(t) has nonnegative entries, by Lemma 6 we

have

|ϕ(x)| ≤
∑

k∈Kn

(n − k)!en−k (1 − k/n)
k−n

γm
n [R(0, An)mTn(t)vn] (k).

If m = 0 we have [Tn(t)vn] (k) = e−nt tn−k

(n−k)! while if m ≥ 1, as we have seen

in (19) of the proof of Lemma 16,

[R(0, An)mTn(t)vn] (k) ≤ σm(n − k + 1)

nm+n−k
.
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Thus if m = 0,

(22)

|ϕ(x)| ≤
∑

k∈Kn

(n − k)!en−k

(

1 − k

n

)k−n

e−nt tn−k

(n − k)!

=
∑

k∈Kn

en−k

(

1 − k

n

)k−n

e−nttn−k.

By Lemma 9,

en−k (1 − k/n)
k−n

e−nttn−k ≤ 1 (k ∈ Kn).

Moreover, since dn/n ≥ 4
√

log(n)/n and 0 ≤ k ≤ 2n/3 (k ∈ Kn), by Lemma 9

en−k

(

1 − k

n

)k−n

e−nttn−k ≤ 1

n
(k ∈ Kn, |t − (1 − k/n)| ≥ dn/(2n)) ,

that is for every k ∈ Kn with at most one exception. Thus for m = 0, by (22)

we get |ϕ(x)| ≤ 1 + log(n)/n.

Consider now 1 ≤ m < ∞. We have

(23)

|ϕ(x)| ≤
∑

k∈Kn

(n − k)!en−k (1 − k/n)k−n γm
n

σm(n − k + 1)

nm+n−k

=
∑

k∈Kn

(n − k)!

(

e

n − k

)n−k

γm
n−k

σm(n − k + 1)

(n − k)m

(

γn

γn−k

)m (

1 − k

n

)m

.

First, Let 1 ≤ m <
√

log(n). We have (G3) for our (γn)n∈N thus (8) of

Lemma 12 can be applied and by n − k ≥ n/3 (k ∈ Kn) we get

(n − k)!
( e

n − k

)n−k

γm
n−k

σm(n − k + 1)

(n − k)m
≤ 1

(n − k)1/6
≤ 2

n1/6
(k ∈ Kn).

So by (23) and γn/γn−k ≤ 3/2 (k ∈ Kn),

|ϕ(x)| ≤ 2

n1/6

∑

k∈Kn

( γn

γn−k

)m(

1 − k

n

)m

≤ 2 log(n)(3/2)
√

log(n)

n1/6
≤ 1

for n sufficiently large.
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For
√

log(n) ≤ m < ∞, by (6) in Lemma 12, (23) can be continued as

|ϕ(x)| ≤
∑

k∈Kn

(n − k)!
( e

n − k

)n−k

γm
n−k

σm(n − k + 1)

(n − k)m

( γn

γn−k

)m(

1 − k

n

)m

≤
∑

k∈Kn

( γn

γn−k

)m(

1 − k

n

)m

.

We have γn/γn−k ≤ 3/2 and 1 − k/n ≤ 1/2 (k ∈ Kn) so

∑

k∈Kn

( γn

γn−k

)m(

1 − k

n

)m

≤ log(n)(3/2)m(1/2)m ≤ log(n)(3/4)log(n)1/2 ≤ 1

for n sufficiently large. Thus we concluded |ϕ(x)| ≤ 1+log(n)/n for n sufficiently

large.

Finally to have ϕ(y) ≥ (1 − log(n)/n)
∑

k∈Kn
|αk|,

ϕ(y) =
∑

k∈Kn

(n − k)!en−k
(

1 − k

n

)k−n |αk|
αk

[

∑

l∈Kn

αlTn(1 − l/n)vn

]

(k)

≥
∑

k∈Kn

|αk|(n − k)!en−k
(

1 − k

n

)k−n

[Tn(1 − k/n)vn] (k)

−
∑

k∈Kn

(n − k)!en−k
(

1 − k

n

)k−n
[

∑

l∈Kn, l 6=k

|αl|Tn(1 − l/n)vn

]

(k).

As we have seen for the estimate of (22),

∑

k∈Kn

|αk|(n − k)!en−k
(

1 − k

n

)k−n

[Tn(1 − k/n)vn] (k)

=
∑

k∈Kn

|αk|(n − k)!en−k
(

1 − k

n

)k−n

ek−n (1 − k/n)n−k

(n − k)!
=

∑

k∈Kn

|αk|

and by Lemma 9, using (k − l)/n ≥ dn/n ≥ 2
√

log(n)/n for k, l ∈ Kn with

k 6= l,

∑

k∈Kn

(n − k)!en−k
(

1 − k

n

)k−n
[

∑

l∈Kn, l 6=k

|αl|Tn(1 − l/n)vn

]

(k)

=
∑

k,l∈Kn, k 6=l

(n−k)!en−k
(

1− k

n

)k−n

|αl|el−n (1 − l/n)n−k

(n − k)!
≤ log(n)

n

∑

l∈Kn

|αl|.

That is, ϕ(y) ≥ (1 − log(n)/n)
∑

k∈Kn
|αk|, as stated. Thus for n sufficiently

large, on Yn the norm ‖.‖n is approximately an l1 norm.
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3.2. The Spectral Mapping Theorem. Using the l1-like subspace isolated

in the previous section we show that our construction allows a drastic failure of

any spectral mapping theorem. Set

S = {t ∈ R
+ \ {0} : nt(

√
γnblog(n)/ 3

√
γnc)−1 ∈ N for infinitely many n}.

We show that for every t ∈ S,

(24)

{λ ∈ C : |λ| = 1} ⊂ σ(T (t)) and {λ ∈ C : |λ| = r} ∩ σ(T (t)) 6= ∅ (0 ≤ r < 1).

Since (γn)n∈N can easily be chosen in such a way that S is dense in R+, in

which case (24) holds for every t > 0, this is in striking contrast with σ(A) =
{

−k/
√

γk : e61 ≤ k < ∞
}

proved in Proposition 17.4.

From now on n is assumed to be so large that (21) holds. Fix t ∈ S and let

first λ ∈ C satisfy |λ| = 1. We show that there exists xn ∈ X with ‖xn‖ = 1

such that ‖T (t)xn − λxn‖ → 0 as n → ∞; this clearly implies λ ∈ σ(T (t)).

Following the notation of the previous section, let dn ∈ N satisfy

4
√

n log(n) + 1 < dn < n/(6 log(n))

and with bn = dnblog(n)/ 3
√

γnc set

zn =

b 3
√

γnc
∑

j=1

λjTn

(

1 − b(n + 1)/2c+ jbn

n

)

vn.

Since zn ∈ Yn we have

n − log(n)

n + log(n)

b 3
√

γnc
∑

j=1

|λj | ≤ ‖zn‖n ≤
b 3
√

γnc
∑

j=1

|λj | = b 3
√

γnc.

Similarly,

Tn

(

bn

n

)

zn =

b 3
√

γnc
∑

j=1

λjTn

(

1 − b(n + 1)/2c+ (j − 1)bn

n

)

vn

=λzn + λTn

(

1 − b(n + 1)/2c
n

)

vn

− λb 3
√

γnc+1Tn

(

1 − b(n + 1)/2c+ b 3
√

γncbn

n

)

vn

hence

(25)

∥

∥

∥

∥

Tn

(

bn

n

)

zn

‖zn‖n
− λ

zn

‖zn‖n

∥

∥

∥

∥

n

≤ n + log(n)

n − log(n)

2

b 3
√

γnc
.
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Choose dn = bnt(
√

γnblog(n)/ 3
√

γnc)−1c and set

tn = dn
√

γnblog(n)/ 3
√

γncn−1.

Then since γn → ∞ as n → ∞, 4
√

n log(n) +1 < dn < n/(6 log(n)) holds for n

sufficiently large. Let xn ∈ X be nonzero only on Xn and xn|Xn = zn/‖zn‖n.

By t ∈ S we have tn = t for infinitely many n ∈ N and by (25),

‖T (tn)xn − λxn‖ =

∥

∥

∥

∥

Tn

(

tn√
γn

)

xn − λnxn

∥

∥

∥

∥

n

=

∥

∥

∥

∥

Tn

(

bn

n

)

zn

‖zn‖n
− λ

zn

‖zn‖n

∥

∥

∥

∥

n

→ 0 as n → ∞,

as stated.

Let now 0 < r < 1. We find λ, λn ∈ C with |λ| = |λn| = r and xn ∈ X (n ∈ N)

such that λn → λ and ‖T (t)xn − λnxn‖ → 0 as n → ∞. This again implies

λ ∈ σ(T (t)) since λ /∈ σ(T (t)) would imply that (T (t) − λ′)−1 (|λ′ − λ| ≤ ε) is

uniformly bounded for some ε > 0.

Let n be such that e−nt/(2
√

γn) < r. Consider the functions

fn, gn : {λ ∈ C : |λ| > e−nt/(2
√

γn)} → Xn,

fn(λ) =

b 3
√

γnc
∑

j=−∞
λj−b 3

√
γnc−1Tn

(

1 − b(n + 1)/2c + jbn

n

)

vn,

gn(λ) =

0
∑

j=−∞
λj−1Tn

(

1 − b(n + 1)/2c+ jbn

n

)

vn.

The coordinates of Tn(t)vn are of the form e−nttk/k! (0 ≤ k ≤ n) and we have

bn =dnblog(n)/ 3
√

γnc = bnt(
√

γnblog(n)/ 3
√

γnc)−1cblog(n)/ 3
√

γnc ≥
nt

2
√

γn
.

Thus ebn |λ| > 1 for λ ∈ C with |λ| > e−nt/(2
√

γn) so fn and gn are nonconstant

and holomorphic on {λ ∈ C : |λ| > e−nt/(2
√

γn)} and they vanish at infinity.

Since

fn(1) − gn(1) =

b 3
√

γnc
∑

j=1

Tn

(

1 − b(n + 1)/2c+ jbn

n

)

vn ∈ Yn

implies ‖fn(1) − gn(1)‖n ≥ b 3
√

γnc(n − log(n))/(n + log(n)), by the maximum

principle we have a λn ∈ C with |λn| = r such that either wn = fn(λn) or
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wn = gn(λn) satisfy ‖wn‖n ≥ 3
√

γn/3. If wn = fn(λn) does so then as we have

seen above,

Tn

(

bn

n

)

wn =

b 3
√

γnc
∑

j=−∞
λ

j−b 3
√

γnc−1
n Tn

(

1 − b(n + 1)/2c+ (j − 1)bn

n

)

vn

=λnwn − Tn

(

1 − b(n + 1)/2c+ (b 3
√

γnc)bn

n

)

vn

hence
∥

∥

∥

∥

Tn

(

bn

n

)

wn

‖wn‖n
− λn

wn

‖wn‖n

∥

∥

∥

∥

n

≤ 3
3
√

γn
.

If wn = gn(λn) a similar computation gives

(26)

∥

∥

∥

∥

Tn

(

bn

n

)

wn

‖wn‖n
− λn

wn

‖wn‖n

∥

∥

∥

∥

n

≤ 3
3
√

γn
.

Recall that

dn = bnt(
√

γnblog(n)/ 3
√

γnc)−1c and tn = dn
√

γnblog(n)/ 3
√

γncn−1.

Let xn ∈ X be nonzero only on Xn and xn|Xn = wn/‖wn‖n. By t ∈ S we have

tnk
= t for a subsequence nk ∈ N (k ∈ N) and by (26),

‖T (tn)xn − λnxn‖ =

∥

∥

∥

∥

Tn

(

tn√
γn

)

xn − λnxn

∥

∥

∥

∥

n

=

∥

∥

∥

∥

Tn

(

bn

n

)

wn

‖wn‖n
− λn

wn

‖wn‖n

∥

∥

∥

∥

n

→ 0 as n → ∞.

Let λ be any accumulation point of the sequence (λnk
)k∈N. We have |λ| = r so

this choice fulfills the requirements.

Finally since σ(T (t)) is closed, 0 ∈ σ(T (t)) follows. This completes the proof.

3.3. The decay of ‖R(iµ,A)‖. As we have seen in (20),

R(iµ,A) ≤ sup
e61≤n<∞

min
{

γ−1/2
n , Cn|µ|−1

}

.

With a more careful approach we could have γ−1+ε
n instead of γ

−1/2
n for any

ε > 0, which in the best case can yield

R(iµ,A) ≤ sup
e61≤n<∞

min
{

log(n)−1+ε, Cn|µ|−1
}

.

So for |µ| = Cn log(n)1−ε we get R(iµ,A) ≤ log(n)−1+ε. According to our nu-

merical experience Cn is growing very quickly. In particular, ‖R(i·,A)‖ : R → R
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is far from being in any Lp class (1 ≤ p < ∞). It would be of interest to find an

optimal sufficient condition on the decay of ‖R(i·,A)‖ assuring the immediate

norm continuity of the semigroup. As far as we know, the best result in this

direction requires both ‖R(i·, A)‖ and ‖R(i·, A?)‖ to be in the same Lp class

for some 1 ≤ p < ∞. Thus the construction above gives much weaker decay.

However, it is important to note that it is easy to construct immediately norm

continuous multiplication semigroups for which the decay of ‖R(i·, A)‖ is as

small as prescribed (see e.g. [7, Chapter II.4.32 p. 120]).
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