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ABSTRACT

We show that there exists a reflexive Banach space (&, ||.||) and a strongly
continuous semigroup (7 (t))¢>o with generator (A, D(A)) on (X, ||.||) such
that limegr, |y —oo [[R(i1t, A)|| = 0 but (7 (t))¢>0 is not eventually norm
continuous. This answers a question of Amnon Pazy in the negative.

1. Introduction

It is the fundamental principle of semigroup theory that the behavior of a
strongly continuous semigroup (7'(t));>0 on a Banach space X and the proper-
ties of its generator (A, D(A)), or equivalently the properties of the resolvent
function R(\, A) = (A — A)~! (XA € C), should closely correlate. Indeed, the
Laplace transform carries the regularity properties of the semigroup to the resol-
vent function while the several inversion and approximation formulas (Trotter-
Kato, Post-Widder, etc.) allow the reconstruction of the semigroup from the
resolvent (see [7], [17] or [18] for the relevant techniques and results in semi-
group theory). And the correlation is indeed perfect if the participants are so:
the analytic semigroups, the differentiable or merely eventually differentiable
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semigroups are characterized by the geometry of the spectrum of A and by the
growth rate of R(\, A) (see [7, Chapter I11.4] or [17, Chapter 2.4 and Chapter
2.5]); and if X happens to be a Hilbert space the characterization of eventual
and immediate norm continuity is also known.

THEOREM 1: Let A be the generator of a strongly continuous semigroup
(T'(t))i>0 on a Hilbert space (H,|.||). Let s(A) = sup{ReX: A € o(A)} de-
note the spectral bound of A. Then

1. (T(t))i>0 Is immediately norm continuous, i.e., the mapping
T: (0,00) — B(H)
is continuous, if and only if for some g > s(A),

(1) im [[R(uo +ip, A)|| = 0;
HER, |ul—oo
2. (T'(t))t>0 Is eventually norm continuous, i.e., there is a to > 0 such that

the mapping T': (tg,00) — B(H) is continuous, if and only if there is

ann € N and a g > s(A) such that
(2) lim  [[R(uo +ip, A)"T(to)| = 0.

HER, |p|—o0

Moreover, conditions (1) and (2) are necessary for immediate and eventual norm
continuity in arbitrary Banach spaces.

The first part of this result, concerning immediate norm continuity, was first
proved by P. You [20]. Later his proof was analyzed, simplified and extended
to eventual norm continuity by G.-Q. Xu in [19], by O. El-Mennaoui and K.-J.
Engel in [5] and [6], and by O. Blasco, and J. Martinez in [2].

However, even in Hilbert spaces one has to face pathologies. As shown by a
counterexample (see e.g. [7, 3.4 Counterexample pp. 273] or [18, Example 1.2.4
pp. 12]), the Spectral Mapping Theorem may fail in Hilbert spaces: if

wo = inf{w € R: IM,, > 1 (|T(1)]| < Mue®* (t > 0))}

denotes the growth bound of (7'(t));>0, one can have s(4) < 0 < 1 < wy,
in particular o(T(t)) \ {0} # €. Since the Spectral Mapping Theorem is
crucial for the study of the asymptotic behavior of semigroups it is an important
revelation that the Spectral Mapping Theorem still holds in arbitrary Banach
spaces for eventually norm continuous semigroups. Hence it would be of
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utmost importance to find the characterization of the eventual or at least of the
immediate norm continuity of semigroups in Banach spaces.

In the past twenty years a huge amount of research activity has been carried
out in order to prove the eventual norm continuity (or at least some weaker
norm continuity) of semigroups arising from various PDE’s on various Banach
spaces (see e.g. [1], [3], [8], [10], [12], [13], [14], [15] and [16] for a representative
list of different approaches); a remarkable result of V. Goersmeyer and L. Weis
[11] gives that the characterization in Theorem 1.1 holds for positive semigroups
in L? spaces (1 < p < 00). But since neither a theorem analogous to Theorem 1
valid for arbitrary semigroups and Banach spaces was proved nor the optimistic
conjecture, often called Amnon Pazy’s Question in the literature, that Theorem
1 may hold in every Banach space, was disproved, the results did not give a
unified theory of norm continuity and were shadowed by the suspicion of being
superfluous.

The purpose of this paper is to show that the problem of characterizing the
norm continuity of semigroups in arbitrary Banach spaces indeed necessitates
new approaches. We give a negative answer to Pazy’s Question, i.e., by con-
structing a suitable Banach space and a semigroup we show that Theorem 1
does not characterize norm continuity in arbitrary Banach spaces.

THEOREM 2: There exists a reflexive Banach space (X, ||.||) and a strongly con-
tinuous semigroup (7 (t))¢>0 with generator (A, D(A)) satisfying the following.

1. (7T(t))e>0 is contractive, ie., |T(t)|]] <1 (t > 0);
2. R(\, A) exists for every A € C with Re\ > —1 and

lim —[[R(ip, Al = 0;

HER, |p[—o0

3. (7 (t))t>0 Is not eventually norm continuous.

We remark that in our construction the Banach space (X, ||.||) is responsible
for the pathological behavior while the semigroup (7 (¢));>0 is in some sense
the simplest possible. After the construction we will discuss the structure of
(X, ]].]l) but we state in advance that (X, ||.]|) is not a UMD space, in particular
it is not LP for 1 < p < co. Thus a counterexample, if exists, is still lacking in
UMD spaces. We will also discuss the failure of the Spectral Mapping Theorem
for our semigroup.
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Finally we would like to thank Prof. Lutz Weis for pointing out certain par-
ticularities of our construction, and in general for his suggestions and helpful
remarks.

2. The construction

In this section we construct a family of semigroups and Banach spaces exhibiting
more and more pathological behavior. They serve as building blocks for our
(T(t))e>0 and (X, ||.]]). Our reference for the basic notions of semigroup theory
is [7]. We recall some definitions related to norm continuity.

Definition 3: A strongly continuous semigroup (7'(t));>0 is eventually norm
continuous if there exists a tg > 0 such that the map ¢ — T(t) is continuous
with respect to the uniform operator topology for ¢ > ty;. The semigroup is
immediately norm continuous if {5 = 0 can be chosen.

The semigroup is norm continuous at infinity if

lim (lim supe Y| T(t + h) — T(t)”) =0,
t—o0 hN\0

where wy is the growth bound of (T'(t))¢>0.

We denote by N, R, R and C the nonnegative integers, the reals, the non-
negative reals and the complex numbers, respectively; log stands for the loga-
rithm to base e.

If X is a product space of n terms or a direct sum over N we index the
coordinates of X starting by 0 and for an # € X and j € N, x(j) stands for
the j-th coordinate of x. The indexing of matrices also starts by 0, and for an
n X n matrix A, A(Z, j) stands for the element in the i-th row and j-th column
of A (0<i,j<n).

2.1. THE IDEA. In order to have a Banach space and a semigroup for which the
characterization in Theorem 1 fails it is a natural approach to check whether
a matrix semigroup T(t) = e’ on a finite dimensional space X can fulfill
the requirements i) to be contractive (this allows us to glue semigroups
together); ii) to have small resolvent along the imaginary axis; iii) to have
IT(1)z —T(1 —e)x| > 1/2 for some z € X with ||z|| =1 and ¢ small.

Now it is tempting to take a simple norm on X for which the construction is

likely to work according to the current theory of norm continuity, say ' norm
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or [*° norm. Unfortunately this approach has been not fruitful yet. Another
possibility is to start with the construction of the semigroup. Since one can
assume that A has no nontrivial invariant subspaces in X, and we have no

candidate for a ¢

‘nice” norm in X anyway, we can fix a base in X in which
A becomes a Jordan block. Then at least we can write up the generator, the
semigroup and the resolvents explicitly. It remains to collect (keeping i)-iii) in
mind) all the vectors in X that we would like to have norm one; to define the
norm on X as the absolute convex hull of these vectors; and to hope that with a
bit of luck these vectors are independent enough to have norm one at the same

time. Indeed, this is what happens.

2.2. THE SEMIGROUPS. In this section we define semigroups on finite dimen-
sional vector spaces and compute their resolvents. These semigroups will serve
as building blocks in our construction.

Let X, = C"1. Let A, € C(»tDx(n+1) 1e the Jordan block with eigenvalue

—n, i.e.,

—-n 1 0 0 0 0

0 —-n 1 0 0 0

0 0 —n 0 0 0
A, = z z

0 0 0 -n 1 0

0 0 0 0 —n

0 0 0 0 0 —n

Example 2.5. p. 9]

WA .

> g1 (?ni—lz)' t:lfl

Lot (jj—l ! (n—2)! =01

t7— tn7 tn—2

0 1 (7—2)! (n—3)! (n—2)!

Tn(t) =€ 0 0 0 ) i e

(n=j—=1!  (n—35)!
0 0 O 0 1 t
0 0 O 0 0 1
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The resolvent function of A,, is

Ris, Ay) = (ip— 4,) " =

1 1 1
iptn  (Gptn)?  (iptn)® 00 (iptbn)RFL
1 N S 1
iutn (i,uJ{n)2 T (i;Hl-n)k
0 0 i Gy
1
0 0 0 . o
0 0 0 . 0
0 0 0 .. 0
0 0 0 . 0
1 1 1
(ipt+n)n—T (ipt+n)™ (ipt+n)ntt
1 1 1
(ip+n)n—2 (ip4n)n—1 (ip4n)m
1 1 1

e A (T L A (D

1 1 1
(iptn)n—k-1 (ipt+n)n—F (ip+n)n—k+1

1 1 1

iptn (ip+n)? (iptn)?
0 1 1
iutn (ip+n)2
1
0 0 in+n

We need to compute the powers of R(iu, A,). For this, we define the following
sequences (0;(n))22, (k € N).

n=1

Definition 4: Set 0¢(1) =1l and og(n) =0 (1 <n < c0);if ox—1(n) (1 <n < o)
is already defined let

or(n) = Zak,l(j) (1<n<o0).
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LEMMA 5: For every 1 < m < co we have

R(ip, Ap)™ = (ip — An)™ ™ =

‘7m(1) o'm(Q) ‘Tm(3) Um(j‘f‘l) ]
Gut)™ )T Gkmm 0 Gugaynts
0 Om om (2 Om (]) _
Guiny™ T T
0 0 i) om0l
e R T L
. : : . Um.(l)
0 0 0 ... =4
0 0 0 .. 0
0 0 0 .. 0
0 0 0 .. 0
( Tm (n—+1) ( am(n+) (Um (n)+1+)
i Jrn m+n—2 i’u‘J’,n m+n—1 i’u‘J’,n m-+n
.#0m2n12)73 _ 0m2n11)72 _ crm(n+) -
(lua-::?n—@ (lua-:? n—2) (luo—tfzn— 1)
Gptn)ntn—1a Gptn)mTtn—3 Gptn)min—2
om(n—j—1) om (n—j) om(n—j+1)

(ipt+mn)mtn—i=2 (iptn)mtn—i-1 (ipt+n)mtn—i

om (1) om(2) Tm (3)
Gutmy Gm T T
0 om (1 om (2)

(ip+n)™ (iu-l—n(){’)”rl
0 0 =

Proof. We prove the statement by induction on m. For m = 1 we have o1(n) =1

(1 < n < o0) so the statement holds. Suppose that it is true for m. For
0 <j <k <n we have

[R(ip, An)™ ] (G, k) = [R(ip, An)™ R(ip, An)] (J, k)

_20'7”l+1—j) 1

1N+n m4l—j (1N+n)k+1 l

_ Um+1(k +1—17)
R

while for 0 < k < j < n we have [R(i,u,An)m‘H} (4, k) = 0, so the proof is
complete. |
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If k € N, 4 € RF and v € N* are arbitrary, for notational convenience we
introduce

R (i, An)” = R(ij2(0), A2)"” R (ipu(1), )" o R (ipa(k — 1), An) 7070

Observe that all the R(ip, Ay)s commute so the order of our products does not
matter. For u € R¥ and v € N*¥ we set |u| = |u(0)] + -+ + [u(k — 1) and
v =v(0)+---+vk—1).

Next we show that R(0, A,)" is the biggest of all the R(iu, Ap)"s

LEMMA 6: For every k € N, p € R¥, v € N¥ and 0 < j,1 < n we have
1R (s, A)") G D] < [RO, 40)1) (7,0

Proof. We prove the statement by induction on |v|. For |v| =1 the statement
is obvious. Suppose that it is true for |v| = m. Take a v with |v| = m + 1; we
can assume that v(0) > 0. Let v/ be defined by v/(0) = v(0) —1 and v/ (i) = v(4)
for ¢ > 1. By the induction hypothesis,

1R i1, A)*] G )] = |[RGa(0), An)R (igss 40)” | (D)
< [R(0, An)R (0, 4,)™] (5,1) = |R(0, 4)" ] (D),
as stated. |
We close this section with estimates on oy, (n).

LEMMA 7: For 1 < m,n < oo we have

nm1 (n+m—2)m-1
3 ——<o,n) L —r
®) m =i = oM S )
Proof. We prove the statement by induction on m. Since o1(n) =1 (1 <n < o0)
the statement is true for m = 1. Suppose that (3) holds for m. Then by Defi-

nition 4,

nm n rm 1
— :/O ] s da <Z 71'_20771 ) =0m+1(n) and

n n (] +m_2)m—1 n+1 (w+m_2)m—1
Tmi1(n) = om(j) < BT o
=1 =1 !
<(n+m71)m
= m! )

as required. |
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In the sequel, |.| stands for lower integer part.

LEMMA 8: For 400 < n < oo,

a2
(1520 =3
and
(1 ~ L_\/m)newm 22
n -3
Proof. By taking logarithm, for 400 < n < co we get
(n-Ltog (1+ -1 ) — Lyl
N R R NI
<= W (L1 ~ e * T tvar) ~
Y R Y L
2(n—[vn]) ~ 3(n—Lvn])? = 20°
and
(o M80) 15 (L) -
< 2
- 20
so the statements follows from e~%/20 < 2/3. |

LEMMA 9: For every 0 < k < oo and max{1l,k} <n < oo,
(4) "R — k/n)Fmem TR <1 (1> 0).

For t > 0 the function t — "% (1 — k/n)* "™ e="t4"=* attains its maximum 1
for t = 1—k/n, it is strictly increasing on [0,1 — k/n| and strictly decreasing on
[1—k/n, o). Moreover, ifn > €°,0 < k < 2n/3 and |[t—(1—k/n)| > 2+/log(n)/n
then

(5) "R — k/n)Fmem TR < 1/n.

Proof. A simple derivation shows the monotonicity properties and (4) immedi-
ately follow. For (5), by monotonicity it is enough to show

R —k/m)F e MR < 1/ for |t — (1 — k/n)| = 2¢/log(n)/n.
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Let 7 = £24/nlog(n), i.e., t =1 — k/n+ 7/n. Then we have to show that
"R —k/m)fre iR — e T (147 /(n— k)R < 1/n.

After taking logarithm and using n/3 < n —k < n we get

7.2 7_3

-
- - k)1 1 < -
T+ n )og< Jrn—kz>_ 2(n—kz)+3(n—kz)2
4nlog(n) = 32-8(nlog(n))>/?
- +
2n 3n?

< —2log(n) + 24+/log(n)3/n < —log(n

for n > e°. This completes the proof. |

A

The properties in the following definition play a key role in the construction
of our Banach spaces.

Definition 10: We say that a sequence (v, )nen satisfies
(G1) if v, > 1 (n € N);
(G2) if 2(1+21og(Yniq))et2180m+a) <log(n) (0 < d < V/2n, e <n < 00);
(G3) if yp1q <log(n) (0 <d < V2n, e <n < o0);
(G4) if v, — 00 as n — oc.

The reason for taking n > €5 is that even for v, 14 = 1, (G2) can be satisfied
only for n > €8, Tt is easy to see that a sequence satisfying (G1-G4) exists, e.g.
~vn = max {1,log(log(n))} works, but we do not need an explicit formula for the
YnS SO we omit the elementary computation.

We need two simple observations.

LEMMA 11: For every sequence (Y, )nen,
1. (G2) implies 4 4+ 41og(ynra) < log(n) (0 < d <v/2n, € < n < 00);
2. (G3) implies 31log(3n)'/2(1 + 2log(Ynia)) < log(n) (0 < d < /2n,
e?%0 < p < 00).

Proof. The statements follow from 4 + 4z < 2(1 + 2x)e!T2* (x € RY) and
3log(3n)'/2(1 + 2log(log(n))) <log(n) (e***° <n < c0). |

LEMMA 12: Let ¢ < n < 00, 0 < d < v2n and 1 < m < oo. If (Vn)nen

satisfies (G1) and (G2), then
om(n+1) re

©) omlnt

n
nm E) n!’}/7T+d = 1
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while if \/n +1 < m < oo, in addition, then

1
m—1

om(n+1)
nm

(7)

- n.
n ’Yn+d —

If 2590 < n < 0o and (Vn)nen satisfies (G1) and (G3), then for 1 < m <

V/log(3n) we have
om(n+1) re 1
cm\tv o) (Z I~ —_
(8) nm (n> n'fyner S n1/6 :

Proof. By the Stirling formula,

9) 2mn (E) e T < nl < V27 (E) e (1<n<o0).
e e

For m =1 and m = 2 we have o1(n) = 1 and o2(n) =n (n € N) so (6) and (8)
turn to

(10) (e)n 1< (e)n 1< "
—) nl< =) <
n Tn+d n (n + 1)772l+d
and
n 5/6 n 11/6
m () 2 (e 2
n Tn+d n (n + 1)7n+d

By (9) both (G2) and (G3) imply

n 2/3 5/6 11/6
(E> n! < V2mnet/(120) < n72 < min{ i , i 5 }
n 21og”(n) Yntd (n+ 1)’Yn+d

for our n and d so (10) and (11) hold.
For m > 3, by Lemma 7 and (9), the left handside of (6), (7) and (8) can be
estimated as

e () it < g (1) VA (1) e
(n+m—1)m"1 1 ( e >m71

nm 21(m — 1) \m —1
X G_Wi”“\/ﬁeﬁ’ﬂﬂd
(n+m—1)m"1 1

—nm—l(m _ 1)m—1 n(m — 1)

<

m—1_m <
€ Trn+d€ 12
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By taking logarithm and replacing m — 1 with m we have to show that

1
(12) mlog(n+m)+m + (m+1)log(yn+a) + 15~

(m+ 3) (log(n) + log(m)) for 2 < m < oo;
< ¢ (m+3) (log(n) +log(m)) — glog(n) for 2 <m < Vog(3n);
(m + 3) log(n) + mlog(m) for vn <m < .
Suppose first that m < y/n. Then mlog(1 +m/n) < m?/n <1 so

1
mlog(n+m)+m+ (m+ 1)log(ynta) + Ton

(13) < mlog(n) +mlog (1 + %) +m(1 + 2log(Yn+a)) + 0.1
< mlog(n) +m(1 + 2log(yn+a)) + 1.1
If 1+ 2log(Yntd) < log(m) then the first inequality of (12) holds by 1.1 <
1/21log(n). While if log(2) < log(m) < 1 + 2log(vyn+q) then by (G2),
. 1
m(1+210g(yn1a)) < e T2ET (1 + 2log(yn 1)) < 5 log(n)
so the first inequality of (12) follows from 1.1 < 2log(2) < mlog(m).
For 2 < m < log(3n)'/?, by (G3) and Lemma 11.2 we have

m(1 + 210g(vniq)) < log(3n)2(1 + 210g(Ynia)) < = log(n)

Wl =

so the second inequality of (12) follows again from 1.1 < 2log(2) < mlog(m).
Finally suppose that v/n < m, say m = n® where a > 1/2. Then the third
inequality of (12) turns to

—~

1
12n

m+1

(14) mtog(n) + miog(1 + 1)+ m (14 "L bog(r,0) ) +

1
< mlog(n) + amlog(n) + B log(n),
so by 1/(12n) <1 < 1/2log(n) it is enough to show that
mlog(n) +mlog(l +n®"1) +m(l + 2log(Vnra)) < mlog(n) + amlog(n),

i.e., that
log(14+n*"1) +1 4 2log(ynia) < alog(n).
For 1/2 < o < 1 this follows from (G2) and Lemma 11.1 by

log(1 +n°"") + 1+ 21og(Yn+a) < 2+ 2log(ynra) < 1/2log(n).
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For o > 1 we have

log(1+n®"") + 1+ 2log(ynta) < log(n®~') + 2+ 2log(ynta)
= alog(n) —log(n) + 2 + 21og(Vn+d)

so we are done again by (G2) and Lemma 11.1. This completes the proof. |

2.3. THE BANACH SPACES. We turn X, into a Banach space by defining the
unit ball of a norm on it. For this, let v, = (0,0,...,0,1) € X,, and let (7,,)nen
satisfy (G1), (G2) and (G4) of Definition 10. We define the closed unit ball of
the norm on X,, by

B,(1) = abs co {’y,ll”‘R(iu,An)” T,tv,: k€N, peRF, veNk te R"’} ,

where abs co stands for taking the absolute convex hull. We prove first that
B, (1) is indeed the closed unit ball of a norm on X,,.

LEMMA 13: Endow X,, with the coordinate supremum norm. Then By, (1) is a
compact convex symmetric set in X,, with nonempty interior; in particular it is

the closed unit ball of a norm on X,,. We denote this norm by ||.||,-
1. Every x € X,, with ||z||, = 1 can be written as

l
(15) v =3 a0 R (g, An)" Tolty o
§=0
where 0 <1 < n, k; € N (j <1), (vj, uj, t;) € N x RF x RT (5 < 1)
and a; € C (j <) such that 3. [a;| = 1.
2. Conversely, if an x € X,, can be written as in (15) where 0 < I < n,
ki € N (j <1), (vj,pj,t;) € NFi x RF x RY (j <) and aj € C (j <)
such that 3, o] <1 then ||z, < 1.
3. A functional ¢: X,, — C attains its norm on a vector in

(16) { WIR (i, An) To(t)vn: k €N, peRF, v e Nk, teR+}

Proof. First we show that the set of (16) is compact in the coordinate supremum
norm. For this it is enough to show that the entries of v/ R (ip, Ap)” Ty (t) are
bounded and tend to zero as max{|y|, |v|,t} — oo. It is clear that the entries
of T(t), being of the form e~"*t* /k! (0 < k < n), are bounded and tend to zero
as t — oco. Consider now the nonzero entries of ’y,lf‘R (i, Ay)". With m = |v|
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and 0 < j <k <n, by Lemma 5 and Lemma 6 we have

v . vy m my - mUTTL(k+1_j)
W R (i, An)”) (5, k) <90t [R(0, A0)™] (G, k) = v, —

Om(n+1)
s pa

From (6) and (7) of Lemma 12, using (e/n)"n! > v/27n from (9), we get

mOm(n+1)

n o mil — 0 as m — oo.

So the entries of %‘lle (i, Ap,)" are bounded uniformly in g and v and tend to
zero as |v| — oo. Since for |v| fixed the entries of WIR (i, A,)" tend to zero
as || — oo, the statement follows. Now B, (1) is the absolute convex hull of
the compact set of (16), so it is compact, convex and symmetric. Its interior is
nonempty since { R(ij, A, )v,: 0 < j < n} are already linearly independent (see
e.g. |9, Exercise 154, p. 29]).

Next we show 1. The norm one vectors of X,, are on the boundary of B,,(1).
Since B, (1) is compact and convex, its boundary points can be obtained as the
sum one linear combinations of the extreme points of B, (1). Now B, (1) is the
absolute convex hull of the compact set of (16) so the extreme points of B,,(1)
are in the set of (16). This proves 1.

Statement 2 follows directly from the definition of B,,(1). Since a functional
attains its norm on an extreme point of the unit ball we have statement 3, which
completes the proof. |

We denote by ||.||» the operator norm on B(X,,) and also the norm of func-
tionals on X,,.

LEMMA 14: The semigroup (T),(t))i>o satisfies | T,,(t)||, <1 (¢t > 0).

Proof. We show that ||T5,(¢)z||, < 1 for every z € X,, with ||z||, =1 and ¢t > 0.
Take z € X,, with ||z|, = 1. By Lemma 13.1 there are 0 <1 < n, k; € N
(G < 1), (vj,pj,t;) € NF x RFi x RT (j < 1) and a; € C (j < 1) such that

ngl laj| =1 and

l
= ZO‘J‘%‘;}”R (ipg, An)"™ To(ts)vn.

Jj=0
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Let t > 0 be arbitrary. Since the operators in the semigroup and the resolvents

commute,

T, (1) =T <zaw'R<mjA>an<tj>vn)
7=0
(17)

l
Z SR (g, An)™ T(t + t5)on
=0

Thus by Lemma 13.2, ||T )zl <1. |

LEMMA 15: The resolvent R(\, A,,) exists for every A € C\ {—n} and there is
a constant C,, > 0 such that

[ R(ip, An)lln < min {1/, Co/lul} (1 € R).

Proof. Since A,, is a Jordan block of eigenvalue —n, R(\, A4,,) exists for every
A € C\{—n}. Let € X, satisfy |||, = 1. Then by Lemma 13.1, for some
0<I1<n, ki €N <), (,p,tj) € Nti x Rki x RT (j <) and a; € C
(j <1) we have 37, o[ = 1 and

= ZO‘J’V‘MR (ipt, An)™ T (t;)vn.

By Lemma 13.2,

l
Rip, An)e =Y a9 R (g, 1), An) ") T ()0
=0
l

Oé Vi Vi,
=" LA DIR (i, 1), An) 7Y T (80
j=o Tn

is of norm at most 1/4,, which proves the first part of the statement. The
existence of C), follows from the definition R(iy, A,) = (ip — A,) L. |

PROPOSITION 16: For ¢! < n < oo, | T, (1)v, — T (1 — [/n] /n)vs]],, > 1/3.
Proof. Consider the functional ¢: X,, — C defined by
n n— n —n+[v/n
o) = nle"(0) = (n — [Va)le"™ V™ (1= [va)m) Y a(| V).
It suffices to show that |||, < 2 and that

(18) ¢ (T(1)vn — T (1 — [V /n)vy,) > 2/3.
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To have ||¢||», < 2, by Lemma 13.3 it is enough to check |p(z)| < 2 for every
= WIR@p A" To(t)v, where k € N, € R¥, v € N¥ and t € RT. Let
= |v|; since Ty, (t) has nonnegative entries, by Lemma 6 we have
lo(@)| <nle™y;" [R(0, An)™ T (t)vs] (0)
+ (= Ve Y (1= [V )
X Yy [R(0, An) " T (t)vn] ([v/1))-
Now if m =0,
Tot)0u] (0) = e~ L and [Tu(t)o] ((VA]) = et
[Tn(t)vs] (0) =€ o and [T, (t)vn] ([Vn]) =e mv
while if m > 1,

n n

[R(0, A,)"T. <>%Mm:§:£jiiL;Qﬂ.wt mnn+1§:

2T iyl w
Jj=0 =0
LIm(n+1)
nern
and
n—[vn]
- (H*L\/_Jﬁ’l*j) —nt
[R(0, Ap)™ T ()] (|v/)) = Z T R
j=
n—[vn] i
(19) < Unb(” — \_\/HJ + 1) Z (nt)J e—”t
- nm+n—Lvn] — j'
=
< UnL(” - \_\/HJ + 1)
- nm+n—|vn] '
Thus if m =0,
o . L]\ -rlvil gLl
<!n nt” _ IHL\/HJl_— n__~
|p(x)| <nle™e p + (n — [v/n])le ( n ) ¢ (n — [v/n])!

/7] —n
—elentyn + e"*[\/ﬁj (1 _ L\/EJ) efnttnfL\/HJ <2
n
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by Lemma 9 for k =0 and k = |/n]|. While if m > 1,

om(n+1)
lo ()| Sn!enﬁnw

40— VAN (1 | ) T e Lo )

n T V]

n

=n! (6 )n ,ym 0'7”(’[7, + 1)

e \n-lval Tmin = v + 1
+(n—tx/ﬁJ)!(m) Tn—|Va)+1vn) ((n—LL\/\/T;JJ)m |
X (1 — L—\{?J)m'

Since €% < n implies €% < n — [\/n] and |/n| < /2(n — [V/n]), by (6) in
Lemma 12 for d = 0 and d = |/n] we get

n! (e)n mam(n—l—l) < 1

n nm

and
n—1va)
e " om(n—|vn]+1)
oV (=) Evmem G S

thus we concluded |p(z)| < 2.

To show (18), by Lemma 8 we have

‘P(Tn(l)vn)

= nlen S — (= Ve (1 Ll ) Y
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and
(T,(1 = [Vn]/n)v,)
_ene—ntlvm = Lvn)/m)"

n!
—(n— [Va)le WAl (1 = || /n) Y gnt L) (1— [/n]/n)n—vn]
(n— [Vn))! (1—[vnl/n) TSN

S G R

n 3
thus

¥ (Tn(l)vn - Tn(l - I_\/EJ /n)vn) Z 2/37

as required. |

2.4. THE COUNTEREXAMPLE. Let 1 < p < oo be arbitrary fixed and set

o0

(@)= @ X lllla)

n=e61

as an [P-sum of Banach spaces, i.e., for z € X,

Joll = ( > |x<n>||z>1/p.

n=eb1
As usual, ||.|| stands for the norm of operators and functionals on X, as well.
Consider the operators

T(t)= @ Tn(t/vim) (t=0),

n:€61
and let the unbounded operator A: X — X be A = @Zozesl %An with natural

domain D(A) = {x € X: Az € X}. We show that (X, |[.||), (A, D(A)) and
(7 (t))¢>0 fulfill the requirements of Theorem 2.

PROPOSITION 17: With the notation introduced above we have the following.
1. (&, ].|) is a Banach space which is reflexive for 1 < p < oo;
2. (T (t))i>0 is a strongly continuous semigroup of bounded operators sat-
istying |7 (¢)]| <1 (¢ > 0);
3. (A, D(A)) is the generator of (7 (t))i>o0;
4. R(\, A) exists for every A € C\ {—k/\/k: €' <k < oo} and
im [|R(ip, Al = 0;

HER, |p[—o0
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5. (7T (t))i>0 is not eventually norm continuous; moreover (7 (t));>o is not
norm continuous at infinity.

Proof. The first statement is obvious. For the second, by Lemma 14 we have
IT(®)|x, || <1 (t>0,e5 < n < oo) which implies ||[7(t)|| <1 (t > 0). It is
clear that (7(t));>0 is a semigroup so it remains to show that it is strongly
continuous; by [7, 5.3 Proposition p. 38] it is enough to show limy\ o 7 (t)x = =
for every z € X. Fix ¢ > 0 and take an 2 € X. There is an N > €5 such
that 3707 v [[2()IIf < (¢/4)P. Since the restriction of (7(t))i>0 to the finite
dimensional space @g:em X,, is norm continuous there is a 7 > 0 such that
for every 0 < ¢ < 7 and 2’ € @fj:em X, we have | T(t)2' — /|| < e/2. Let
z =2’ + 2" with 2/ € 697]:]:661 X, and 2" € @,y Xn; then [2”] < e/4.
Since (7 (t))¢>0 is contractive we have

IT®)x — x| < T(#)a" — 2| + [T ()" — 2" < % +IT@H2"| + 12" <€

(0 <t < 1), as required.

For 3, observe that (A, D(A)) is a closed densely defined operator. Since the
generator of 7 (t)|x, is An/\/Vn, A is the generator of (7 (t)):>o0.

We turn to 4. By Lemma 15, R(X\, An/\/7n) = VInR(/TnA, Ay) exists for
every A € C\ {-n/\/7m} (1 <n < o0). Thus for A € C fixed, R(A, Ay,) exists
for sufficiently large n and by Lemma 15 and (G4) of Definition 10,

IAIIR(0, An /A )lln < [AlV/Am — 0 as n— oo;

in particular [I 4+ AR(0, An/\/7n)] ! exists and is bounded in norm uniformly
inn. Soif A\ € C\{—k/\Ar: e® < k < oo} is fixed, R(\, An/\/Tn) =
R(0, Ay /\/m) [1 + )\R(O,An/\/%)}fl exists and it is bounded in norm uni-
formly in n. So we have R(A\, A) = @, o1 R(\, An/\/7n), a bounded operator
on X, as required. Moreover, by Lemma 15 we have

(20) |RGm A = sup  |RGm Au/vAnl < sup min{#,c"},

efl<n<oo efl<n<oo |M|

and by (G4) of Definition 10,
sup min {1/, Cn/lul} — 0 as |u] — oo,
efl<n<oo
which proves 4.
To have 5, we show first that (7 (¢))¢>0 is not norm continuous in any ¢y > 0.
Fix an arbitrary to > 0. Let n > %! such that ¢ty < Vn/2. Let x, € X be
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the vector which is nonzero only on X,, and x,|x, = v,. Let 7, > 0 be defined
by to + 7n = ¥n(1 — |v/n]/n) and set y, = T(7,)xn. Then ||z,] < 1 and
|7 (7n)]| <1 imply ||yn| <1 while by Proposition 16 we have

HT (to + M)% =T (to)yn

(s LY (te),,
‘ Lvn

1
T, () v, — T, <1—"J>vn > =
n n 9

By (G2) of Definition 10, \/7,[v/n]/n — 0 as n — oo thus (7 (¢))¢>0 is not
norm continuous in tg, indeed. Moreover, for the growth bound of (7 (t));>0 we

n

have wg = 0 and

1
lim sup (Hmsup |7 (t+h)— ’T(t)||) > —,
t—o0 hAN\0 3

thus (7(t))i>0 is not norm continuous at infinity. This completes the
proof. |

3. Analysis

To close this paper we would like to point out certain particularities of the
construction above. First, we show that, for n sufficiently large, (X,,|.||n)
contains a subspace of dimension log(n) where the norm is approximately the
I* norm (see (21)). This shows, in particular, that the resulting Banach space
(X, ||-1) is not a UMD space (see e.g. [4]). Second, we describe the spectrum of
T(t) (t > 0) and we obtain a drastic failure of any spectral mapping theorem.
Finally we revisit the decay of ||R(iu, A)|| for |u] — oo.

3.1. THE STRUCTURE OF (X, ||.]|). Our construction has one free parameter:
the sequence (v, )nen. It has to be chosen in such a way that (6) in Lemma 12
holds. By Lemma 7 and (9),
n m—1 n n
| >ym@mn 1) (£) = = (£)" (2)" Vamn
nm n (m—1)In™ \n
. < €Vn >m1 e—1/(12(m=1))

m—1 \/m
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In particular, for m — 1 = log(n) we get (v,/log(n))°¢(™ < \/log(n)/n. This
shows v, < log(n) (3 < n < oo0). We will use this observation in two ways:
by assuming 7,14 < log(n) (3 < n < oo ,0 < d < v/2n) and by assuming
Yo/ Vn-k < 3/2 (n € N, n/2 < k <n). Observe that (G3) of Definition 10 is
then satisfied.

Let d,, € N satisfy 4y/nlog(n) + 1 < d,, < n/(6log(n)) and set

Ko = {(n+1)/2] + jdn: 0 < j < log(n)}.

We show that for n sufficiently large, on Y,, = span (T,,(1 — k/n)v,: k € K,,) <
X,, the |||, norm and the I* norm approximately coincide, i.e., for every y € Yy,
say ¥ = Y e, @k Tn(l —k/n)v, where ay, € C (k € K;,), we have

(21) R 1080 § o <l < 3 Jol

n+ 1Og(n) keK, keK,

The inequality [lylln < 3-.ck, lak| holds by Lemma 13.2. For the other
inequality, consider the functional ¢: X,, — C,

o(z) = Z (n—k)le™ % (1 —k/n)F" Mac(k:)

«
keKn k

Just as in the proof of Lemma 16, it is enough to show that |||, < 1+log(n)/n

and that p(y) > (1 —log(n)/n) > pcr. |l

To have ||¢||, < 1+log(n)/n, by Lemma 13.3 it is enough to check |¢(z)| <
1+log(n)/n for every z = /'R (ip1, An)” T (), where k € N, ju € R¥, v € NF
and t € RT. Let m = |v|; since T,,(t) has nonnegative entries, by Lemma 6 we

have

(@) < Y (n—k)le"* (1= k/n)" " i [R(0, An) " T (t)n] (K)-
keK,

If m = 0 we have [T},(t)v,] (k) = e™™ (f:::)! while if m > 1, as we have seen
in (19) of the proof of Lemma 16,

om(n—k+1)

[R(0, An)™ Tu(t)on] (k) < —
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ThU.S lf m = 0,
k k—n tn*k
lp(z)] < (n — k)lenk <1 _ _> ot

kezK:n n (n—k)!

(22) .
— Z €n7k (1 o _> efnttnfk'
n

kEK,

By Lemma 9,

R —k/m)F e R <1 (k€ K).

Moreover, since d,,/n > 44/log(n)/n and 0 < k < 2n/3 (k € K,,), by Lemma 9

k—n
ok (1B e e o - 2 ),

S

n

that is for every k € K,, with at most one exception. Thus for m = 0, by (22)
we get |p(z)| < 14 log(n)/n.
Consider now 1 < m < co. We have

(23)
n— -n _mIm n_k+1)
(o) < 3 (n— ker =t (1 — k) g T L)
kEK,
n—=k m m
e am(n—k—i—l) Tn k
— AN m 1= ]
A = G N )
kEK,

First, Let 1 < m < y/log(n). We have (G3) for our (y,)nen thus (8) of
Lemma 12 can be applied and by n — k > n/3 (k € K,,) we get

e \nk om(n —k+1) 1 2
— k) m < < ke Ky).
(n—k) (n—k) Tn—k (n—k)ym = (n—k)/6 — nl/o (k € Kn)
So by (23) and v /Yn—r < 3/2 (k € K,,),
) de \ Ry 2log(n)(3/2)VIE0)
< — - — < <
bl <o 30 (5) (-5) == e =1

for n sufficiently large.
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For +/log(n) < m < oo, by (6) in Lemma 12, (23) can be continued as

(@) < > (n- k)!(n—ik)n_k’y,’?_kgm((:_:): 1) (VZ:)O N g)m

Yn m k\m
<2 (Gn) (-3)"
keK, Tn—k n
We have v, /Y- <3/2and 1 —k/n <1/2 (k € K,,) so
n m k\m 1/2
> (22)" (1= 5) < togm)3/2)m (172 < togln)(3 /40 < 1
keK, Tn—k n
for n sufficiently large. Thus we concluded |p(z)| < 14+log(n)/n for n sufficiently

large.
Finally to have ¢(y) > (1 —log(n)/n) > e |oul,

ply)=> (n—k)!e”_k(l n)k n'j’;' [ > a1 —l/n)vn}( )

k€K, leEK,

> 37 Jagl(n — k)len (1 - S)H [T(1 — k/n)on] ()

keK,,
B Z (n — k)!en7k<1 B S)kn[ Z loy| T, (1 — l/n)vn] (k).
keK, €K, 1#k

As we have seen for the estimate of (22),

> Jarl(n = kyen (1 - %)k_" T, (1 — k/n)vn) (k)

keK,
= 3 lanl(n - ke H (1 - Y e % S o

n
keK, keK,

and by Lemma 9, using (k —[1)/n > d,/n > 24/log(n)/n for k,I € K,, with
k#1,

> - mpe(1- 5T S - e @)

keK, €Ky, I#k
_ kyk—n (1= Z/n)"”c 1og
_ n—=k l—n
= Z (n—k)le (17E) lagle (= k)l Z |ag].
kIEK,, k#l leK,

That is, ¢(y) > (1 —log(n)/n) Y rck, lak|, as stated. Thus for n sufficiently
large, on Y,, the norm |||, is approximately an /* norm.
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3.2. THE SPECTRAL MAPPING THEOREM. Using the ['-like subspace isolated
in the previous section we show that our construction allows a drastic failure of
any spectral mapping theorem. Set

S = {t e R"\ {0}: nt(\/7n|log(n)//7n])~* € N for infinitely many n}.
We show that for every t € .S,
(24)
{AeC: N =1}co(T@®)and {AeC: N =r}no(TE)#0 (0<r<1).
Since (vn)nen can easily be chosen in such a way that S is dense in R, in
which case (24) holds for every ¢ > 0, this is in striking contrast with o(A) =
{—k’/\/’%: Sl <k < oo} proved in Proposition 17.4.

From now on n is assumed to be so large that (21) holds. Fix ¢ € S and let
first A € C satisfy |A| = 1. We show that there exists z, € X with ||z,|| =1
such that ||7(t)z, — Azy|| — 0 as n — oo; this clearly implies A € o (7 (t)).

Following the notation of the previous section, let d,, € N satisfy

4y/nlog(n) +1 < d, < n/(6log(n))
and with b, = d,[log(n)/&Vn] set

I v (RIELEEEA Y

n

Since z, € Y,, we have

nflogn L &n] Lyl
J < J| —
n+logn Z N zalln < Z (M| = L]
Similarly,
L&) )
: 1)/2 -1
T, (b_n)znz S T, (1_ [(n+1)/2] + m)vn
n ° n
Jj=1
1)/2
=Xz, + AT, (1 _lmr 12 J> -
n
_ )\LWJ+1T7L (1 _ \_(n—i_ 1)/2J + I_\3/ ’YHan) U
n
hence
(25) 7 (2) 2 < 2
n ) |znlln | 2nlln n n — log(n) I_\d/'%J
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Choose dy, = [nt(,/7n|log(n)/ ¢7n)) "] and set

tn = dny/Ynllog(n) /Y nln".

Then since 7, — 0o as n — oo, 4y/nlog(n)+1 < d, < n/(6log(n)) holds for n
sufficiently large. Let x, € X be nonzero only on X, and z,|x, = zn/||znln-
By t € S we have t,, = t for infinitely many n € N and by (25),

t
1T () — Aa]| = \ 7, (—" o — A
VvV In "

o ()
as stated.

Let now 0 < 7 < 1. We find A\, \,, € C with [A| = |\, | =randx, € X (n € N)
such that A\, — A and ||7 (), — A\pzp| — 0 as n — oo. This again implies
A€ a(7T(t)) since A ¢ o(T (t)) would imply that (7(t) —N)~t (]N =\ <e)is
uniformly bounded for some & > 0.

Let n be such that e~/ (2v7) < . Consider the functions

—0 asn— o0,

n

Frsgn: AN €C: |\ > e ™/ VY X,

L&) _
f”()‘) = Z )\j_LWJ_lTn (1 _ \—(n—i_ 1)/2J +.7bn) Un,s

4 n
j=—o00
0 .
_ j—1 B [(n+1)/2] + jbn
g"()‘) Z A T, (1 n Un.

j=-o00

The coordinates of T}, (t)v,, are of the form e~"*¢*/k! (0 < k < n) and we have

_ . nt
b =dulog(n) /7] = Lnt(y/F log(n)/ /7))~ Llog)/ 7] = 5=

Thus e’ |\| > 1 for A € C with |\| > e~"/2V7") 50 f,, and g,, are nonconstant
and holomorphic on {\ € C: |A| > e "/(ZV7)1 and they vanish at infinity.
Since

L&7n) .
fn(l) _ gn(l) _ Z T, <1 B L(n+ 1)T/L2J Jrjbn) v, €Y,

j=1

implies [Lfa(1) = gn(Dlln > | ¢/7) (7 — log(m))/(n + log(n)), by the maximum
principle we have a A, € C with |\,| = r such that either w, = f,(\,) or
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wy, = gn(Apn) satisty [|wp|ln = &n/3. If w, = frn(A\n) does so then as we have
seen above,

L] ) . .
T (b_n) o3 MLy (1 4 1)/2] 4+ 1)bn) o
n n

j=—o0

A, — T, (1 e+ 1)/2) + (LWJ)Z,”> .

n

()
"\ n llwn || nHwan

If wy, = gn(\,) a similar computation gives

(8 i
n ) |lwnlln l|wnlln
Recall that

dp = [nt(y/nlog(n)/§Au]) '] and tn = dny/Fnllog(n)/§m]n "

Let x,, € X be nonzero only on X,, and x,|x, = w,/||wn|n. By t € S we have
t,, =t for a subsequence n, € N (k € N) and by (26),

tn
1T (n)m — Annl] = ‘ T, (— 5 —
VI n

bn) Wy, Wy,
=T, [ = - A

Let A be any accumulation point of the sequence (A, )ren. We have [A| = r so

hence

3
< —.
n \/3 Tn

3
< - .
n \/3 Tn

(26)

— 0 asn — oo.

n

this choice fulfills the requirements.
Finally since o(7 (t)) is closed, 0 € o(7 (t)) follows. This completes the proof.

3.3. THE DECAY OF ||R(iy, A)||. As we have seen in (20),

R(ip, A) < sup  min {%71/2, Cnlul’l} :

e61 §n<oo
With a more careful approach we could have ~, '*¢ instead of 7, Y2 for any

€ > 0, which in the best case can yield
R(ip, A) < sup  min {log(n) =", Cplu| ™"}

efl<n<oo

So for |u| = Cp, log(n)!=¢ we get R(ip, A) < log(n)~'*c. According to our nu-
merical experience C), is growing very quickly. In particular, ||R(i-, A)||: R — R
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is far from being in any L? class (1 < p < oo). It would be of interest to find an
optimal sufficient condition on the decay of | R(i-, A)|| assuring the immediate
norm continuity of the semigroup. As far as we know, the best result in this
direction requires both ||R(i-, A)|| and ||R(i-, A*)|| to be in the same LP class
for some 1 < p < oo. Thus the construction above gives much weaker decay.
However, it is important to note that it is easy to construct immediately norm
continuous multiplication semigroups for which the decay of ||R(i-, A)|| is as
small as prescribed (see e.g. [7, Chapter 11.4.32 p. 120]).
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